相关习题
 0  261145  261153  261159  261163  261169  261171  261175  261181  261183  261189  261195  261199  261201  261205  261211  261213  261219  261223  261225  261229  261231  261235  261237  261239  261240  261241  261243  261244  261245  261247  261249  261253  261255  261259  261261  261265  261271  261273  261279  261283  261285  261289  261295  261301  261303  261309  261313  261315  261321  261325  261331  261339  266669 

科目: 来源: 题型:

【题目】北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估,该商品原来每件售价为25元,年销售8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数上的偶函数.

1)求值;

2)解的不等式的解集;

3)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

科目: 来源: 题型:

【题目】知函数,函数

定义域为求实数取值范围;

⑵当时,求函数最小值

是否存在非负实数使得函数定义域为值域为若存在求出值;若不存在,则说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在几何体ABCDE中,AB⊥平面BCE,且BCE是正三角形,四边形ABCD为正方形,F是线段CD上的中点,G是线段BE的中点,且AB=2

1)求证:GF∥平面ADE

2)求三棱锥FBGC的表面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】为推行“新课堂”教学法,某老师分别用传统教学和“新课堂”两种不同的教学方式在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,若成绩大于70分为“成绩优良”.

(1)由统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

(2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,求抽取的2人中恰有一人来自乙班的概率.

附:,(

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥PABCD中,ABCD是矩形,PA=ABEPB的中点.

1)若过CDE的平面交PA于点F,求证:FPA的中点;

2)若平面PAB⊥平面PBC,求证:BCPA

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,规定排放时污染物的残留含量不得超过1%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:为正常数,为原污染物数量).若前5个小时废气中的污染物被过滤掉了90%,那么要能够按规定排放废气,至少还需要过滤(

A. 小时B. 小时C. 5小时D. 小时

查看答案和解析>>

科目: 来源: 题型:

【题目】现有某高新技术企业年研发费用投入(百万元)与企业年利润(百万元)之间具有线性相关关系,近5年的年研发费用和年利润的具体数据如表:

年研发费用(百万元)

年利润 (百万元)

数据表明之间有较强的线性关系.

(1)求的回归直线方程;

(2)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?

参考数据:回归直线的系数

查看答案和解析>>

同步练习册答案