相关习题
 0  261577  261585  261591  261595  261601  261603  261607  261613  261615  261621  261627  261631  261633  261637  261643  261645  261651  261655  261657  261661  261663  261667  261669  261671  261672  261673  261675  261676  261677  261679  261681  261685  261687  261691  261693  261697  261703  261705  261711  261715  261717  261721  261727  261733  261735  261741  261745  261747  261753  261757  261763  261771  266669 

科目: 来源: 题型:

【题目】在等差数列中,,且前7项和.

(1)求数列的通项公式;

(2),求数列的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程是,点是曲线上的动点.点满足 (为极点).设点的轨迹为曲线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,已知直线的参数方程是,(为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设直线交两坐标轴于两点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数,).

(1)若函数仅有一个极值点,求实数的取值范围;

(2)证明:当时,有两个零点).且满足.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为(

A.4037B.4038C.4027D.4028

查看答案和解析>>

科目: 来源: 题型:

【题目】已知右焦点为的椭圆)过点,且椭圆关于

直线对称的图形过坐标原点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于点 (异于椭圆的左、右顶点),线段的中点为.点是椭圆的右顶点.求直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点若函数的图象恰好经过个格点,则称函数阶格点函数.下列函数中为一阶格点函数的是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用网络外卖

偶尔或不用网络外卖

合计

男性

50

50

100

女性

60

40

100

合计

110

90

200

(1)根据表中数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?

(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数(首项)按照上述规则进行变换后的第9项为1(注:1可以多次出现),则的所有不同值的个数为( )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的极坐标方程为,倾斜角为的直线过点.

(1)求曲线的直角坐标方程和直线的参数方程;

(2)设,是过点且关于直线对称的两条直线,交于两点,交于, 两点. 求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】语文中有回文句,如:上海自来水来自海上,倒过来读完全一样。数学中也有类似现象,如:88,454,7337,43534等,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为回文数”!

二位的回文数有11,22,33,44,55,66,77,88,99,共9个;

三位的回文数有101,111,121,131,…,969,979,989,999,共90个;

四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;

由此推测:11位的回文数总共有_________

查看答案和解析>>

同步练习册答案