科目: 来源: 题型:
【题目】给出下列四个命题:
①若函数
在区间
上单调递增,则
;
②若
(
且
),则
的取值范围是
;
③若函数
,则对任意的
,都有
;
④若
(
且
),在区间
上单调递减,则
.
其中所有正确命题的序号是______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产一种产品,根据经验,其次品率
与日产量
(万件)之间满足关系,
(其中
为常数,且
,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如
表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额
(万元)表示为日产量
(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之,亦倍下袤,上袤从之,各以其广乘之,并,以高乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘,将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为
A.
B.
C. 39 D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
![]()
(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(
)的离心率为
,
,
,
,
的面积为1.
(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于
、
两点
,求直线
的方程;
(3)在
轴上是否存在一点
,使得过点
的任一直线与椭圆若有两个交点
、
则都有
为定值?若存在,求出点
的坐标及相应的定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com