相关习题
 0  261664  261672  261678  261682  261688  261690  261694  261700  261702  261708  261714  261718  261720  261724  261730  261732  261738  261742  261744  261748  261750  261754  261756  261758  261759  261760  261762  261763  261764  261766  261768  261772  261774  261778  261780  261784  261790  261792  261798  261802  261804  261808  261814  261820  261822  261828  261832  261834  261840  261844  261850  261858  266669 

科目: 来源: 题型:

【题目】已知分别是双曲线的左、右焦点,过点作垂直与轴的直线交双曲线于两点,若为锐角三角形,则双曲线的离心率的取值范围是_______

【答案】

【解析】

根据双曲线的通径求得点的坐标,将三角形为锐角三角形,转化为,即,将表达式转化为含有离心率的不等式,解不等式求得离心率的取值范围.

根据双曲线的通径可知,由于三角形为锐角三角形,结合双曲线的对称性可知,故,即,即,解得,故离心率的取值范围是.

【点睛】

本小题主要考查双曲线的离心率的取值范围的求法,考查双曲线的通径,考查双曲线的对称性,考查化归与转化的数学思想方法,属于中档题.本小题的主要突破口在将三角形为锐角三角形,转化为,利用列不等式,再将不等式转化为只含离心率的表达式,解不等式求得双曲线离心率的取值范围.

型】填空
束】
17

【题目】已知命题:方程有两个不相等的实数根;命题:不等式的解集为.若为真,为假,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四棱柱中,底面是梯形,,侧面为菱形,.

(Ⅰ)求证:

(Ⅱ)若,直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】是双曲线:的右焦点,左支上的点,已知,则周长的最小值是_______

【答案】

【解析】

设左焦点为,利用双曲线的定义,得到当三点共线时,三角形的周长取得最小值,并求得最小的周长.

设左焦点为,根据双曲线的定义可知,所以三角形的周长为,当三点共线时,取得最小值,三角形的周长取得最小值. ,故三角形周长的最小值为.

【点睛】

本小题主要考查双曲线的定义,考查三角形周长最小值的求法,属于中档题.

型】填空
束】
16

【题目】已知分别是双曲线的左、右焦点,过点作垂直与轴的直线交双曲线于两点,若为锐角三角形,则双曲线的离心率的取值范围是_______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是椭圆上一动点,为坐标原点,则线段中点的轨迹方程为_______

【答案】

【解析】

设出点的坐标,由此得到点的坐标,将点坐标代入椭圆方程,化简后可得点的轨迹方程.

,由于中点,故,代入椭圆方程得,化简得.点的轨迹方程为.

【点睛】

本小题主要考查代入法求动点的轨迹方程,考查中点坐标,属于基础题.

型】填空
束】
15

【题目】是双曲线:的右焦点,左支上的点,已知,则周长的最小值是_______

查看答案和解析>>

科目: 来源: 题型:

【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数其中为常数.

1求曲线在点处的切线方程

2求证:有且仅有两个零点;

3为整数且当恒成立的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知的顶点 在椭圆上, 在直线上,且

)求椭圆的离心率.

)当边通过坐标原点时,求的长及的面积.

)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置,使

)求证: 平面

)求三棱柱的体积.

)线段上是否存在点,使得平面.若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】若实数满足,则的最小值是( )

A. 0 B. C. -6 D. -3

【答案】C

【解析】

画出可行域,向上平移目标函数到可行域边界的位置,由此求得目标函数的最小值.

画出可行域如下图所示,由图可知,目标函数在点处取得最小值为.故选C.

【点睛】

本小题主要考查线性规划的知识,考查线性目标函数的最值的求法,考查数形结合的数学思想方法,属于基础题.画可行域时,要注意判断不等式所表示的范围是在直线的哪个方位,不一定是三条直线围成的三角形.还要注意目标函数化成斜截式后,截距和目标函数的对应关系,截距最大时,目标函数不一定取得最大值,可能取得最小值.

型】单选题
束】
12

【题目】已知是椭圆长轴上的两个端点,是椭圆上关于轴对称的两点,直线的斜率分别为,若椭圆的离心率为,则的最小值为( )

A. 1 B. C. D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDAB=AA1=

)证明:平面A1BD∥平面CD1B1

)求三棱柱ABD﹣A1B1D1的体积.

查看答案和解析>>

同步练习册答案