相关习题
 0  261939  261947  261953  261957  261963  261965  261969  261975  261977  261983  261989  261993  261995  261999  262005  262007  262013  262017  262019  262023  262025  262029  262031  262033  262034  262035  262037  262038  262039  262041  262043  262047  262049  262053  262055  262059  262065  262067  262073  262077  262079  262083  262089  262095  262097  262103  262107  262109  262115  262119  262125  262133  266669 

科目: 来源: 题型:

【题目】判断下列函数的奇偶性:

1

2

3

4

5

6

7

8

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的离心率为,长半轴长为短轴长的b倍,AB分别为椭圆C的上、下顶点,点

求椭圆C的方程;

若直线MAMB与椭圆C的另一交点分别为PQ,证明:直线PQ过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】圆心在原点的两圆半径分别为,点是大圆上一动点,过点作轴的垂线,垂足为 与小圆交于点,过的垂线,垂足为,设点坐标为.

(1)求的轨迹方程;

(2) 已知直线 是常数,且 是轨迹上的两点,且在直线的两侧,满足两点到直线的距离相等.平面内是否存在定点,使得恒成立?若存在,求出定点坐标;若不可能,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线过点,圆.

(1)当直线与圆相切时,求直线的一般方程;

(2)若直线与圆相交,且弦长为,求直线的一般方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】求满足下列条件的椭圆或双曲线的标准方程:

(1)椭圆的焦点在轴上,焦距为4,且经过点

(2)双曲线的焦点在轴上,右焦点为,过作重直于轴的直线交双曲线于两点,且,离心率为.

查看答案和解析>>

科目: 来源: 题型:

【题目】1)已知点AB的坐标分别为(30),(-30),直线APBP相交于点P,且它们的斜率之积是-2,求动点P的轨迹方程.

2)设Pxy),直线l1x+y=0l2x-y=0.若点Pl1的距离与点Pl2的距离之积为2,求动点P的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于两点.

(1)求椭圆的方程;

(2)若是弦的中点,是椭圆上一点,求的面积最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】判断下列函数的奇偶性:

1

2

3

4

5.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知命题甲成立,可推出命题乙不成立,则下列说法中,一定正确的是( )

A.命题甲不成立,可推出命题乙成立B.命题甲不成立,可推出命题乙不成立

C.命题乙成立,可推出命题甲成立D.命题乙成立,可推出命题甲不成立

查看答案和解析>>

同步练习册答案