科目: 来源: 题型:
【题目】椭圆
(
)的离心率是
,点
在短轴
上,且
。
(1)球椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
两点。是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)已知四棱锥
的侧棱长与底面边长都相等,四边形
为正方形,点
是
的中点,求异面直线
与
所成角的余弦值.
![]()
(2)如图,在长方体
中,
分别是
的中点,求异面直线
与
所成角的余弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=a﹣
(a∈R)
(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;
(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。已知甲每轮猜对的概率是
,乙每轮猜对的概率是
;每轮活动中甲、乙猜对与否互不影响。各轮结果亦互不影响。假设“星队”参加两轮活动,求:
(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中.角A、B、C所对边的长分别为a、b、c满足c=1,
以AB为边向△ABC外作等边三角形△ABD.
![]()
(1)求∠ACB的大小;
(2)设∠ABC=
.试求函数
的最大值及
取得最大值时的
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)的定义域为(-3,3),
满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判断f(x)的单调性,并证明;
(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目: 来源: 题型:
【题目】以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,已知直线
的参数方程是
(m>0,t为参数),曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与
轴交于点
,与曲线
交于点
,且
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com