科目: 来源: 题型:
【题目】某医疗器械公司在全国共有
个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这
个销售点的年销量绘制出如下的频率分布直方图.
![]()
(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这
个销售点中抽取容量为
的样本,求该五组
,
,
,
,
,(单位:千台)中每组分别应抽取的销售点数量.
(3)在(2)的条件下,从前两组
,
中的销售点随机选取
个,记这
个销售点在
中的个数为
,求
的分布列和期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,试问:
轴上是否存在定点
,使得
为定值?若存在,求出该定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在极坐标系中,曲线
的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标系方程和直线
的普通方程;
(2)点
在曲线
上,且到直线
的距离为
,求符合条件的
点的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个盒子里装有大小均匀的
个小球,其中有红色球
个,编号分别为
;白色球
个, 编号分别为
, 从盒子中任取
个小球(假设取到任何—个小球的可能性相同).
(1)求取出的
个小球中,含有编号为
的小球的概率;
(2)在取出的
个小球中, 小球编号的最大值设为
,求随机变量
的分布列.
查看答案和解析>>
科目: 来源: 题型:
【题目】某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述:①甲只能承担第四项工作;②乙不能承担第二项工作;③丙可以不承担第三项工作;④丁可以承担第三项工作;其中错误的是______.
一 | 二 | 三 | 四 | 五 | |
甲 | 15 | 17 | 14 | 17 | 15 |
乙 | 22 | 23 | 21 | 20 | 20 |
丙 | 9 | 13 | 14 | 12 | 10 |
丁 | 7 | 9 | 11 | 9 | 11 |
戊 | 13 | 15 | 14 | 15 | 11 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)那么方程
在区间
上的根的个数是___________.
(2)对于下列命题:
①函数
是周期函数;
②函数
既有最大值又有最小值;
③函数
的定义域是
,且其图象有对称轴;
④在开区间
上,
单调递减.
其中真命题的序号为______________(填写真命题的序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的普通方程和曲线
的直角坐标方程;
(2)已知点
是曲线
上的动点,求点
到曲线
的最小距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的通项公式为an=n2-n-30.
(1)求数列的前三项,60是此数列的第几项?
(2)n为何值时,an=0,an>0,an<0?
(3)该数列前n项和Sn是否存在最值?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com