相关习题
 0  263135  263143  263149  263153  263159  263161  263165  263171  263173  263179  263185  263189  263191  263195  263201  263203  263209  263213  263215  263219  263221  263225  263227  263229  263230  263231  263233  263234  263235  263237  263239  263243  263245  263249  263251  263255  263261  263263  263269  263273  263275  263279  263285  263291  263293  263299  263303  263305  263311  263315  263321  263329  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;

(2)若曲线上所有的点均在直线的右下方,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户为“组”,否则为“组”,调查结果如下:

1)根据以上数据,能否有60%的把握认为“组”用户与“性别”有关?

2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“组”和“组”的人数;

3)从(2)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,记这3人中在“组”的人数为,试求的分布列与数学期望.

参考公式: ,其中.

临界值表:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数R.

(1)试讨论函数的极值点的个数;

(2)若N*,且恒成立,求的最大值.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂共有员工5000人,现从中随机抽取100位员工,对他们每月完成合格产品的件数进行统计,统计表格如下:

(1)工厂规定:每月完成合格产品的件数超过3200件的员工,会被评为“生产能手”称号.由以上统计数据填写下面的列联表,并判断是否有95%的把握认为“生产能手”称号与性别有关?

(2)为提高员工劳动的积极性,该工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的(包括2600件),计件单价为1元;超出(0,200]件的部分,累进计件单价为1.2元;超出(200,400]件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段的频率视为相应的概率,在该厂男员工中随机选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)超过3100元的人数为,求的分布列和数学期望.

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】等边的边长为3,点分别为上的点,且满足(如图1),将沿折起到的位置,使二面角成直二面角,连接 (如图2

1)求证: 平面

2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1求圆C的普通方程和直线l的直角坐标方程;

2M是直线l上任意一点,过M做圆C切线,切点为AB,求四边形AMBC面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若的极值,求的值,并求的单调区间。

(2)若时,,求实数的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动圆与直线相切且与圆外切。

(1)求圆心的轨迹的方程;

(2)设第一象限内的点在轨迹上,若轴上两点,满足. 延长分别交轨迹两点,若直线的斜率,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】为提倡节能减排,同时减轻居民负担,广州市积极推进“一户一表”工程。非一户一表用户电费采用“合表电价”收费标准:0.65元/度。“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:

第一档

第二档

第三档

每户每月用电量(单位:度)

电价(单位:元/度)

0.61

0.66

0.91

例如:某用户11月用电410度,采用合表电价收费标准,应交电费元,若采用阶梯电价收费标准,应交电费元.

为调查阶梯电价是否能取到“减轻居民负担”的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量(单位:度)为:88、268、370、140、440、420、520、320、230、380.

组别

月用电量

频数统计

频数

频率

合计

(1)完成频率分布表,并绘制频率分布直方图;

(2)根据已有信息,试估计全市住户11月的平均用电量(同一组数据用该区间的中点值作代表);

(3)设某用户11月用电量为度(),按照合表电价收费标准应交元,按照阶梯电价收费标准应交元,请用表示,并求当时,的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于75%的用户带来实惠?

查看答案和解析>>

同步练习册答案