科目: 来源: 题型:
【题目】已知椭圆
的两焦点在
轴上,且短轴的两个顶点与其中一个焦点的连线构成斜边为
的等腰直角三角形.
(1)求椭圆的方程;
(2)动直线
交椭圆
于
两点,试问:在坐标平面上是否存在一个定点
,使得以线段
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间
内,其频率分布直方图如图.
![]()
(1)求获得复赛资格应划定的最低分数线;
(2)从初赛得分在区间
的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间
与
各抽取多少人?
(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设
表示得分在
中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在
给予500元奖励,若该生分数在
给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率为
,圆
:
与
轴交于点
、
,
为椭圆
上的动点,
,
面积最大值为
.
(1)求圆
与椭圆
的方程;
(2)圆
的切线
交椭圆于点
、
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面直角坐标系内的动点P到直线
的距离与到点
的距离比为
.
(1)求动点P所在曲线E的方程;
(2)设点Q为曲线E与
轴正半轴的交点,过坐标原点O作直线
,与曲线E相交于异于点
的不同两点
,点C满足
,直线
和
分别与以C为圆心,
为半径的圆相交于点A和点B,求△QAC与△QBC的面积之比
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱台
中,底面
是菱形,
,
,
平面
.
![]()
(1)若点
是
的中点,求证:
//平面
;
(2)棱BC上是否存在一点E,使得二面角
的余弦值为
?若存在,求线段CE的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在
之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布
,其中
近似为样本平
均数
,
近似为样本方差
.
(i)利用该正态分布,求
;
(ii)央视媒体平台从年龄在
和
的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间
的人数是Y,求变量Y的分布列和数学期望.附:
,若
,则
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com