相关习题
 0  263337  263345  263351  263355  263361  263363  263367  263373  263375  263381  263387  263391  263393  263397  263403  263405  263411  263415  263417  263421  263423  263427  263429  263431  263432  263433  263435  263436  263437  263439  263441  263445  263447  263451  263453  263457  263463  263465  263471  263475  263477  263481  263487  263493  263495  263501  263505  263507  263513  263517  263523  263531  266669 

科目: 来源: 题型:

【题目】设函数

1)若是函数的一个极值点,求函数的单调区间;

2)当时,对于任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)若上恰有2个点到的距离等于,求的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019213日《西安市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

1)求这200名学生每周阅读时间的样本平均数;

2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为的学生中抽取9名参加座谈会.

i)你认为9个名额应该怎么分配?并说明理由;

ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?(精确到0.1

阅读时间不足8.5小时

阅读时间超过8.5小时

理工类专业

40

60

非理工类专业

附:).

临界值表:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为坐标原点,为椭圆的上焦点,上一点轴上方,且.

(1)求直线的方程;

(2)为直线异于的交点,的弦的中点分别为,若在同一直线上,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1):

产品的质量指数在的为三等品,在的为二等品,在的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元),以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.

(1)求每件产品的平均销售利润;

(2)该公司为了解年营销费用(单位:万元)对年销售量(单位:万件)的影响,对近5年的年营销费用和年销售量 数据做了初步处理,得到的散点图(如图2)及一些统计量的值.

16.30

24.87

0.41

1.64

表中

根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.

(ⅰ)建立关于的回归方程;

(ⅱ)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润-营销费用,取

参考公式:对于一组数据:,其回归直线的斜率和截距的最小乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,均为边长为的等边三角形.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点在椭圆上,点满足以为直径的圆过椭圆的上顶点.

1)求椭圆的方程;

2)已知直线过右焦点与椭圆交于两点,在轴上是否存在点使得为定值?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数),.

(1)当时,求函数的极小值;

(2)若当时,关于的方程有且只有一个实数解,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,侧面底面,且为等腰直角三角形,的中点.

1)求证:平面

2)求直线与平面所成线面角的正切值.

查看答案和解析>>

同步练习册答案