相关习题
 0  263351  263359  263365  263369  263375  263377  263381  263387  263389  263395  263401  263405  263407  263411  263417  263419  263425  263429  263431  263435  263437  263441  263443  263445  263446  263447  263449  263450  263451  263453  263455  263459  263461  263465  263467  263471  263477  263479  263485  263489  263491  263495  263501  263507  263509  263515  263519  263521  263527  263531  263537  263545  266669 

科目: 来源: 题型:

【题目】如图,的内心为分别是边的中点,证明:直线平分的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】求最小的正整数,使得当正整数点时,在前个正整数构成的集合中,对任意总存在另一个数,满足为平方数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在正整数n的各位数字中,共含有个1,个2,,个n.证明:并确定使等号成立的条件.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知梯形中,,,,,上的点,的中点,沿将梯形折起,使平面平面.

1)当时,求证:

2)记以为顶点的三棱锥的体积为,求的最大值;

3)当取得最大值时,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知平面,点的中点.

1)求证:平面平面

2)求直线与平面所成角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果从北大打车到北京车站去接人,聪明的专家一定会选择走四环。虽然从城中间直穿过去看上去很诱人,但考虑到北京的道路几乎总是正南正北的方向,事实上不会真有人认为这样走能抄近路。在城市中,专家估算两点之间的距离时,不会直接去测量两点之间的直线距离,而会去考虑它们相距多少个街区。在理想模型中,假设每条道路都是水平或者竖直的,那么只要你朝着目标走(不故意绕远路),不管你这样走,花费的路程都是一样的。出租车几何学(taxicab geometry),所谓的出租车几何学是由十九世纪的另一位真专家赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。只是直角坐标系内任意两点定义它们之间的一种距离,请解决以下问题:

1)定义:是所有到定点距离为定值的点组成的图形,求圆周上的所有点到点距离均为方程,并作出大致图像;

2)在出租车几何学中,到两点距离相等的点的轨迹称为线段垂直平分线,已知点

①写出在线段垂直平分线的轨迹方程,并写出大致图像;

②求证:三边的垂直平分线交于一点(该点称为外心),并求出外心”.

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆上一点关于原点的对称点为为其右焦点,若,设,且,则该椭圆的离心率的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】(多选题)设正实数满足,则()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

同步练习册答案