科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,
,
分别是椭圆
的左,右焦点,点P是椭圆E上一点,满足
轴,
.
![]()
(1)求椭圆E的离心率;
(2)过点
的直线l与椭圆E交于两点A,B,若在椭圆B上存在点Q,使得四边形OAQB为平行四边形,求直线l的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该设备开始盈利?
(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,已知椭圆E的中心在原点,长轴长为8,椭圆在X轴上的两个焦点与短轴的一个顶点构成等边三角形.
求椭圆的标准方程;
过椭圆内一点
的直线与椭圆E交于不同的A,B两点,交直线
于点N,若
,求证:
为定值,并求出此定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在正三棱柱
中,侧棱长
为3,H、G分别是AB,
中点.
![]()
(1)证明:
平面
;
(2)若
,求此三棱柱的侧面积;
(3)若P为侧棱
上一点,且
,
与平面
所成角大小为
,求此三棱柱的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径
,
,
,D为半圆弧
的中点,若异面直线BD和
所成角的大小为
.
![]()
(1)证明:
平面
;
(2)求该几何体的表面积和体积;
(3)求点D到平面
的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆形纸片的圆心为O,半径为5,该纸片上的等边三角形ABC的中心为O,点D,E,F为圆O上的点,
,
,
分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起
,
,
,使得D,E,F重合于P,得到三棱锥
.
![]()
(1)当
时,求三棱锥
的体积;
(2)当
的边长变化时,三棱锥
的侧面和底面所成二面角为
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设点
是抛物线
上异于原点
的一点,过点
作斜率为
、
的两条直线分别交
于
、
两点(
、
、
三点互不相同).
(1)已知点
,求
的最小值;
(2)若
,直线
的斜率是
,求
的值;
(3)若
,当
时,
点的纵坐标的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室
,
是边长为2的正方形.
![]()
(1)若
是等腰三角形,在图2的网格中(每个小方格都是边长为1的正方形)画出堑堵的三视图;
(2)若
,
在
上,证明:
,并回答四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(3)当阳马
的体积最大时,求点
到平面
的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场营销人员进行某商品
市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数 | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析发现,可用线性回归模型拟合当地该商品一天销量
(百件)与该天返还点数
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测若返回6个点时该商品当天销量;
(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间(百分比) |
|
|
|
|
|
|
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
将对返还点数的心理预期值在
和
的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程
,其中
,
;②
.)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆锥的展开侧面图是一个半圆,
、
是底面圆
的两条互相垂直的直径,
为母线
的中点,已知过
与
的平面与圆锥侧面的交线是以
为顶点、
为对称轴的抛物线的一部分.
![]()
(1)证明:圆锥的母线与底面所成的角为
;
(2)若圆锥的侧面积为
,求抛物线焦点到准线的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com