科目: 来源: 题型:
【题目】如图①,在
中,
,
的中点为
,点
在
的延长线上,且
.固定边
,在平面内移动顶点
,使得圆
分别与边
,
的延长线相切,并始终与
的延长线相切于点
,记顶点
的轨迹为曲线
.以
所在直线为
轴,
为坐标原点建立平面直角坐标系,如图②所示.
![]()
(1)求曲线
的方程;
(2)过点
的直线
与曲线
交于不同的两点
,
,直线
,
分别交曲线
于点
,
,设
,
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在五边形
中,
,
,
,
,将
沿
折起到
的位置,得到如图②所示的四棱锥
,
为线段
的中点,且
平面
.
![]()
(1)求证:
平面
.
(2)若直线
与
所成角的正切值为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量
(升)关于行驶速度
(千米/小时)的函数解析式可以表示为:
,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知|x|≤2,|y|≤2,点P的坐标为(x,y).
(1)求当x,y∈R时,P满足(x-2)2+(y-2)2≤4的概率.
(2)求当x,y∈Z时,P满足(x-2)2+(y-2)2≤4的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业为了解年广告费
(单位:万元)对年销售额
(单位:万元)的影响,对近4年的年广告费
和年销售额
的数据作了初步整理,得到下面的表格:
年广告费 | 2 | 3 | 4 | 5 |
年销售额 | 26 | 39 | 49 | 54 |
(1)用年广告费
作解释变量,年销售额
作预报变量,在所给坐标系中作出这些数据的散点图,并判断
与
哪一个更适合作为年销售额
关于年广告费
的回归方程类型(给出判断即可,不必说明理由).
![]()
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程.
(3)已知商品的年利润
与
,
的关系为
.根据(2)的结果,计算年广告费
约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】若存在一个实数
,使得
成立,则称
为函数
的一个不动点,设函数
(
,
为自然对数的底数),定义在
上的连续函数
满足
,且当
时,
.若存在
,且
为函数
的一个不动点,则实数
的取值范围为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列四个结论:
①命题“
,
”的否定是“
,
”;
②命题“若
,则
且
”的否定是“若
,则
”;
③命题“若
,则
或
”的否命题是“若
,则
或
”;
④若“
是假命题,
是真命题”,则命题
,
一真一假.
其中正确结论的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,设
为
:
上的动点,点
为
在
轴上的投影,动点
满足
,点
的轨迹为曲线
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,点
,
为直线
上两点.
(1)求
的参数方程;
(2)是否存在
,使得
的面积为8?若存在,有几个这样的点?若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,四棱锥
中,
底面
,面
是直角梯形,
为侧棱
上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(1)证明:
平面
;
(2)线段
上是否存在点
,使
与
所成角的余弦值为
?若存在,找到所有符合要求的点
,并求
的长;若不存在,说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com