相关习题
 0  263848  263856  263862  263866  263872  263874  263878  263884  263886  263892  263898  263902  263904  263908  263914  263916  263922  263926  263928  263932  263934  263938  263940  263942  263943  263944  263946  263947  263948  263950  263952  263956  263958  263962  263964  263968  263974  263976  263982  263986  263988  263992  263998  264004  264006  264012  264016  264018  264024  264028  264034  264042  266669 

科目: 来源: 题型:

【题目】如图,已知圆柱,底面半径为1,高为2,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其路径最短时在侧面留下的曲线记为:将轴截面绕着轴,逆时针旋转 角到位置,边与曲线相交于点.

(1)当时,求证:直线平面

(2)当时,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.

1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);

2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均数近似为样本方差.

①求

②已知该市高三学生约有10000名,记体质健康指数在区间的人数为,试求.

附:参考数据

若随机变量服从正态分布,则,.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的首项为1,若对任意的nN*,数列{an}满足an+13an2,则称数列{an}具有性质L

)判断下面两个数列是否具有性质L

13579

141664256

)若{an}是等差数列且具有性质L,其前n项和Sn满足Sn2n2+2nnN*),求数列{an}的公差d的取值范围;

)若{an}是公比为正整数的等比数列且具有性质L,设bnannN*),且数列{bn}不具有性质L,求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正三棱柱的底面边长为的中点,平面与平面所成的锐二面角的正切值是,则四棱锥外接球的表面积为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中的零点:且恒成立,在区间上有最小值无最大值,则的最大值是(

A. 11B. 13C. 15D. 17

查看答案和解析>>

科目: 来源: 题型:

【题目】中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术;蕴含了极致的数学美和丰富的传统文化信息,现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线1的极坐标方程为

(Ⅰ)求C的普通方程和l的直角坐标方程;

(Ⅱ)设直线lx轴和y轴的交点分别为AB,点M在曲线C上,求MAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C1ab0),其右焦点为F10),离心率为

)求椭圆C的方程;

)过点F作倾斜角为α的直线l,与椭圆C交于PQ两点.

)当时,求△OPQO为坐标原点)的面积;

)随着α的变化,试猜想|PQ|的取值范围,并证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=lnxx2+axaR

(Ⅰ)证明lnxx1

(Ⅱ)若a≥1,讨论函数fx)的零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=ax2+ax1aR).

)当a1时,求fx)>0的解集;

)对于任意xR,不等式fx)<0恒成立,求a的取值范围;

)求关于x的不等式fx)<0的解集.

查看答案和解析>>

同步练习册答案