科目: 来源: 题型:
【题目】给定一个数列
,在这个数列里,任取
项,并且不改变它们在数列
中的先后次序,得到的数列称为数列
的一个
阶子数列.
已知数列
的通项公式为
(
为常数),等差数列
是
数列
的一个3阶子数列.
(1)求
的值;
(2)等差数列
是
的一个
阶子数列,且
(
为常数,
,求证:
;
(3)等比数列
是
的一个
阶子数列,
求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
是边长为2的正方形,平面
平面
,且
,
是线段
的中点,过
作直线
,
是直线
上一动点.
![]()
(1)求证:
;
(2)若直线
上存在唯一一点
使得直线
与平面
垂直,求此时二面角
的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司生产了
两种产品投放市场,计划每年对这两种产品托人200万元,每种产品一年至少投入20万元,其中
产品的年收益
,
产品的年收益
与投入
(单位万元)分别满足
;若公司有100名销售人员,按照对两种产品的销售业绩分为普销售、中级销售以及金牌销售,其中普销售28人,中级销售60人,金牌销售12人
(1)为了使
两种产品的总收益之和最大,求
产品每年的投入
(2)为了对表现良好的销售人员进行奖励,公司制定了两种奖励方案:
方案一:按分层抽样从三类销售中总共抽取25人给予奖励:普通销售奖励2300元,中级销售奖励5000元;金牌销售奖励8000元
方案二:每位销售都参加摸奖游戏,游戏规则:从一个装有3个白球,2个红球(求只有颜色不同)的箱子中,有放回地莫三次球,每次只能摸一只球.若摸到红球的总数为2,则可奖励1500元,若摸到红球总数是3,则可获得奖励3000元,其他情况不给予奖励,规定普通销售均可参加1次摸奖游戏;中级销售均可参加2次摸奖游戏,金牌销售均可参加3次摸奖游戏(每次摸奖的结果相互独立,奖励叠加)
(ⅰ)求方案一奖励的总金额;
(ⅱ)假设你是企业老板,试通过计算并结合实际说明,你会选择哪种方案奖励销售员.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点为极点,
轴为非负半轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和曲线
的普通方程;
(2)求直线
与曲线
交于两点
,线段
的中点的横坐标为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,等边三角形
所在的平面垂直于底面
,
,
,
是棱
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)判断直线
与平面
的是否平行,并说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com