科目: 来源: 题型:
【题目】某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数.
(1)请列出X的分布列;
(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】设复数β=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)若β是关于t的一元二次方程t2﹣2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常数
),当n为奇数时,动点P(x、y)的轨迹为C1.当n为偶数时,动点P(x、y)的轨迹为C2.且两条曲线都经过点
,求轨迹C1与C2的方程;
(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
,求实数x0的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】新高考取消文理科,实行“
”模式,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人,并把调查结果制成下表:
年龄(岁) |
|
|
|
|
|
|
频数 | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)把年龄在
称为中青年,年龄在
称为中老年,请根据上表完成
列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?
了解新高考 | 不了解新高考 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(2)若从年龄在
的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为
,求
的分布列以及
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知矩形纸片
的边
,
,点
,
分别在边
与
上,现将纸片的右下角沿
翻折,使得顶点
翻折后的新位置
恰好落在边
上,设
.
![]()
(1)若
,求
的长.
(2)设
,将
的长度表示为关于
的函数
,并求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:设
是正整数,如果对任意正整数
,当
时,即有
,那么称数列
的前
项可被数列
的第
项替换.已知数列
的前
项和是
,数列
是公比为1的等差数列.
(1)求数列
的通项公式(用
,
表示);
(2)已知
,数列
的前
项和
满足
;
①求证:数列
为等比数列,并求
的通项公式;
②若数列
的前
可被数列
的前
项替换,且
的最大值为8,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线
的准线与
轴交于点
,过点
作直线
交抛物线于
,
两点.
(1)求直线
的斜率的取值范围;
(2)若线段
的垂直平分线交
轴于
,求证:
;
(3)若直线
的斜率依次为
,
,
,…,
,…,线段
的垂直平分线与
轴的交点依次为
,
,
,…,
,…,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】从数列
中取出部分项组成的数列称为数列
的“子数列”.
(1)若等差数列
的公差
,其子数列
恰为等比数列,其中
,
,
,求
;
(2)若
,
,判断数列
是否为
的“子数列”,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com