科目: 来源: 题型:
【题目】动圆
过定点
,且在
轴上截得的弦
的长为4.
(1)若动圆圆心
的轨迹为曲线
,求曲线
的方程;
(2)在曲线
的对称轴上是否存在点
,使过点
的直线
与曲线
的交点
满足
为定值?若存在,求出点
的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将斜边长为
的等腰直角
沿斜边
上的高
折成直二面角
,
为
中点.
![]()
(1)求二面角
的余弦值;
(2)
为线段
上一动点,当直线
与平面
所成的角最大时,求三棱锥
外接球的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了了解该市教师年龄分布情况,对年龄在
内的5000名教师进行了抽样统计,根据分层抽样的结果,统计员制作了如下的统计表格:
年龄区间 |
|
|
|
|
教师人数 | 2000 | 1300 | ||
样本人数 | 130 |
由于不小心,表格中部分数据被污染,看不清了,统计员只记得年龄在
的样本人数比年龄在
的样本人数多10,根据以上信息回答下列问题:
![]()
(1)求该市年龄在
的教师人数;
(2)试根据上表做出该市教师按照年龄的人数频率分布直方图,并求该市教师年龄的平均数
及方差
(同一组的数据用该组区间的中点值作代表).
查看答案和解析>>
科目: 来源: 题型:
【题目】改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
:
(
,
为参数).在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
:
.
(1)说明
是哪一种曲线,并将
的方程化为极坐标方程;
(2)若直线
的方程为
,设
与
的交点为
,
,
与
的交点为
,
,若
的面积为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的
个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计
元/月的流量包将有多少人购买?
(Ⅱ)若把
元/月以下(不包括
元)的流量包称为低价流量包,
元以上(包括
元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过
的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
![]()
其中![]()
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+
).
(1)求A;
(2)若b,
a,c成等差数列,△ABC的面积为2
,求a.
查看答案和解析>>
科目: 来源: 题型:
【题目】港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为( )
![]()
A. 300,
B. 300,
C. 60,
D. 60,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
在点
处的切线斜率为0.函数![]()
(1)试用含
的代数式表示
;
(2)求
的单调区间;
(3)令
,设函数
在![]()
处取得极值,记点
,
,证明:线段
与曲线
存在异于
,
的公共点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左顶点为
,右焦点为
,直线
与
轴相交于点
,且
是
的中点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点
的直线与椭圆相交于
两点,
都在
轴上方,并且
在
之间,且
到直线
的距离是
到直线
距离的
倍.
①记
的面积分别为
,求
;
②若原点
到直线
的距离为
,求椭圆方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com