相关习题
 0  264677  264685  264691  264695  264701  264703  264707  264713  264715  264721  264727  264731  264733  264737  264743  264745  264751  264755  264757  264761  264763  264767  264769  264771  264772  264773  264775  264776  264777  264779  264781  264785  264787  264791  264793  264797  264803  264805  264811  264815  264817  264821  264827  264833  264835  264841  264845  264847  264853  264857  264863  264871  266669 

科目: 来源: 题型:

【题目】设数列(任意项都不为零)的前项和为,首项为,对于任意,满足.

1)数列的通项公式;

2)是否存在使得成等比数列,且成等差数列?若存在,试求的值;若不存在,请说明理由;

3)设数列,若由的前项依次构成的数列是单调递增数列,求正整数的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若,求函数处的切线方程;

2)若,且是函数的一个极值点,确定的单调区间;

3)若且对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左焦点为,点为椭圆的左、右顶点,点是椭圆上一点,且直线的倾斜角为,已知椭圆的离心率为.

1)求椭圆的方程;

2)设为椭圆上异于的两点,若直线的斜率等于直线斜率的倍,求四边形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】疫情期间,某小区超市平面图如图所示,由矩形与扇形组成,米,米,,经营者决定在点处安装一个监控摄像头,摄像头的监控视角,摄像头监控区域为图中阴影部分,要求点在弧上,点在线段上.设.

1)求该监控摄像头所能监控到的区域面积关于的函数关系式,并求出的取值范围;

2)求监控区域面积最大时,角的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆,直线与圆交于两点,点在直线上且满足.若,则弦中点的横坐标的取值范围为_____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),曲线 .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.

1)求曲线的极坐标方程;

2)射线)与曲线的异于极点的交点为,与曲线的交点为,求.

【答案】(1) 的极坐标方程为 的极坐标方程为(2) .

【解析】试题分析:(1先根据三角函数平方关系消参数得曲线,再根据将曲线极坐标方程;2代人曲线的极坐标方程,再根据.

试题解析:1)曲线的参数方程为参数)

可化为普通方程

,可得曲线的极坐标方程为

曲线的极坐标方程为.

2)射线)与曲线的交点的极径为

射线)与曲线的交点的极径满足,解得

所以.

型】解答
束】
23

【题目】设函数

(1)设的解集为,求集合

(2)已知为(1)中集合中的最大整数,且(其中为正实数),求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,圆C的普通方程为在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为写出圆C的参数方程和直线l的直角坐标方程;设直线lx轴和y轴的交点分别为ABP为圆C上的任意一点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点,分别过作抛物线的切线,两切线交于点.

1)若直线变动时,点始终在以为直径的圆上,求动点的轨迹方程;

2)设圆,若直线与圆相切于点(点在线段上).是否存在点使得?若存在,求出点坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】由于当前学生课业负担较重,造成青少年视力普遍下降,现从湖口中学随机抽取16名学生,经校医用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

1)指出这组数据的众数和中位数;

2)若视力测试结果不低于5.0则称为“好视力”,求校医从这16人中选取3人,至多有1人是“好视力”的概率;

3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在三棱锥中,底面的中点.

(1)求证:

(2)若二面角的大小为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案