相关习题
 0  264807  264815  264821  264825  264831  264833  264837  264843  264845  264851  264857  264861  264863  264867  264873  264875  264881  264885  264887  264891  264893  264897  264899  264901  264902  264903  264905  264906  264907  264909  264911  264915  264917  264921  264923  264927  264933  264935  264941  264945  264947  264951  264957  264963  264965  264971  264975  264977  264983  264987  264993  265001  266669 

科目: 来源: 题型:

【题目】如图,已知圆)和双曲线),记轴正半轴、轴负半轴的公共点分别为,又记在第一、第四象限的公共点分别为.

1)若,且恰为的左焦点,求的两条渐近线的方程;

2)若,且,求实数的值;

3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.

查看答案和解析>>

科目: 来源: 题型:

【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②上是增函数或者减函数.

1)若在区间上是闭函数,求常数的值;

2)找出所有形如的函数(都是常数),使其在区间上是闭函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.

1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);

2)如果,并且,试分别求出的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】是递增数列,数列满足:对任意,存在,使得,则称的“分隔数列”.

(1)设,证明:数列的分隔数列;

(2)设的前n项和,,判断数列是否是数列的分隔数列,并说明理由;

(3)设的前n项和,若数列的分隔数列,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆C上.

(1)求椭圆C的标准方程;

(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;

(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某景区欲建两条圆形观景步道(宽度忽略不计),如图所示,已知(单位:米),要求圆M分别相切于点BD,圆分别相切于点CD

(1)若,求圆的半径;(结果精确到0.1米)

(2)若观景步道的造价分别为每米0.8千元与每米0.9千元,则当多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求a的值;

(2)在(1)的条件下,若存在,使,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在R上的奇函数,当时,

则函数的所有零点之和为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,左、右焦点分别为,离心率为,点为线段的中点.

)求椭圆的方程.

)若过点且斜率不为的直线与椭圆交于两点,已知直线相交于点,试判断点是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.

某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)

(1)求中位数.

(2)从这15天的数据中任取两天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.

(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.

查看答案和解析>>

同步练习册答案