科目: 来源: 题型:
【题目】如图,已知圆
:
(
)和双曲线
:
(
),记
与
轴正半轴、
轴负半轴的公共点分别为
、
,又记
与
在第一、第四象限的公共点分别为
、
.
![]()
(1)若
,且
恰为
的左焦点,求
的两条渐近线的方程;
(2)若
,且
,求实数
的值;
(3)若
恰为
的左焦点,求证:在
轴上不存在这样的点
,使得
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在本题中,我们把具体如下性质的函数
叫做区间
上的闭函数:①
的定义域和值域都是
;②
在
上是增函数或者减函数.
(1)若
在区间
上是闭函数,求常数
的值;
(2)找出所有形如
的函数(
都是常数),使其在区间
上是闭函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为
公顷和
公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为
公顷和
公顷.
![]()
(1)设
,用关于
的函数
表示
,并求
在区间
上的最大值的近似值(精确到0.001公顷);
(2)如果
,并且
,试分别求出
、
、
、
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若
是递增数列,数列
满足:对任意
,存在
,使得
,则称
是
的“分隔数列”.
(1)设
,证明:数列
是
的分隔数列;
(2)设
是
的前n项和,
,判断数列
是否是数列
的分隔数列,并说明理由;
(3)设
是
的前n项和,若数列
是
的分隔数列,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的右焦点为
,且点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆
上异于其顶点的任意一点Q作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在x轴,y轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆E过
,且椭圆
上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某景区欲建两条圆形观景步道
(宽度忽略不计),如图所示,已知
,
(单位:米),要求圆M与
分别相切于点B,D,圆
与
分别相切于点C,D.
![]()
(1)若
,求圆
的半径;(结果精确到0.1米)
(2)若观景步道
的造价分别为每米0.8千元与每米0.9千元,则当
多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右顶点分别为
,
,左、右焦点分别为
,
,离心率为
,点
,
为线段
的中点.
![]()
(
)求椭圆
的方程.
(
)若过点
且斜率不为
的直线
与椭圆
交于
、
两点,已知直线
与
相交于点
,试判断点
是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
![]()
(1)求中位数.
(2)从这15天的数据中任取两天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com