科目: 来源: 题型:
【题目】某“芝麻开门”娱乐活动中,共有
扇门,游戏者根据规则开门,并根据打开门的数量获取相应奖励.已知开每扇门相互独立,且规则相同,开每扇门的规则是:从给定的
把钥匙(其中有且只有
把钥匙能打开门)中,随机地逐把抽取钥匙进行试开,钥匙使用后不放回.若门被打开,则转为开下一扇门;若连续
次未能打开,则放弃这扇门,转为开下一扇门;直至
扇门都进行了试开,活动结束.
(1)设随机变量
为试开第一扇门所用的钥匙数,求
的分布列及数学期望
;
(2)求恰好成功打开
扇门的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
,其中e是自然对数的底数.
(1)若函数
的极大值为
,求实数a的值;
(2)当a=e时,若曲线
与
在
处的切线互相垂直,求
的值;
(3)设函数
,若
>0对任意的x
(0,1)恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是各项均为正数的无穷数列,数列
满足
(n
),其中常数k为正整数.
(1)设数列
前n项的积
,当k=2时,求数列
的通项公式;
(2)若
是首项为1,公差d为整数的等差数列,且
=4,求数列
的前2020项的和;
(3)若
是等比数列,且对任意的n
,
,其中k≥2,试问:
是等比数列吗?请证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
(a>b>0)的左、右焦点分别为F1,F2,过点F2的直线交椭圆于M,N两点.已知椭圆的短轴长为
,离心率为
.
![]()
(1)求椭圆的标准方程;
(2)当直线MN的斜率为
时,求
的值;
(3)若以MN为直径的圆与x轴相交的右交点为P(t,0),求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某单位科技活动纪念章的结构如图所示,O是半径分别为1cm,2cm的两个同心圆的圆心,等腰△ABC的顶点A在外圆上,底边BC的两个端点都在内圆上,点O,A在直线BC的同侧.若线段BC与劣弧
所围成的弓形面积为S1,△OAB与△OAC的面积之和为S2, 设∠BOC=2
.
![]()
(1)当
时,求S2﹣S1的值;
(2)经研究发现当S2﹣S1的值最大时,纪念章最美观,求当纪念章最美观时,cos
的值.(求导参考公式:(sin2x)'=2cos2x,(cos2x)'=﹣2sin2x)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直三棱柱ABC—A1B1C1中,ACBC,D,E分别是A1B1,BC的中点.求证:
![]()
(1)平面ACD⊥平面BCC1B1;
(2)B1E∥平面ACD.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市对一项惠民市政工程满意程度(分值:
分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
![]()
现用分层抽样的方法从所有参与网上投票的市民中随机抽取
位市民召开座谈会,其中满意程度在
的有5人.
(1)求
的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) |
|
|
|
|
|
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在
的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点到直线
的距离为
,过点
的直线
与
交于
、
两点.
(1)求抛物线
的准线方程;
(2)设直线
的斜率为
,直线
的斜率为
,若
,且
与
的交点在抛物线
上,求直线
的斜率和点
的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点到直线
的距离为
,过点
的直线
与
交于
、
两点.
(1)求抛物线
的准线方程;
(2)设直线
的斜率为
,直线
的斜率为
,若
,且
与
的交点在抛物线
上,求直线
的斜率和点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com