科目: 来源: 题型:
【题目】菱形
中,![]()
平面
,
,
,
![]()
(1)证明:直线
平面
;
(2)求二面角
的正弦值;
(3)线段
上是否存在点
使得直线
与平面
所成角的正弦值为
?若存在,求
;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年底,武汉发生“新型冠状病毒”肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为“最美逆行者”.武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者疑似的新冠肺炎患者无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户不漏一人.若在排查期间,某小区有5人被确认为“确诊患者的密切接触者”,现医护人员要对这5人随机进行逐一“核糖核酸”检测,只要出现一例阳性,则将该小区确定为“感染高危小区”.假设每人被确诊的概率均为
且相互独立,若当
时,至少检测了4人该小区被确定为“感染高危小区”的概率取得最大值,则
____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(
)的离心率为
,过右焦点且垂直于长轴的直线与椭圆C交于P,Q两点,且
.
(1)求椭圆C的方程;
(2)A,B是椭圆C上的两个不同点,若直线
,
的斜率之积为
(以O为坐标原点),M是
的中点,连接
并延长交椭圆C于点N,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.
![]()
(1)求这50家食品生产企业考核成绩的平均数
(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)
(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在
的企业数为X,求X的分布列与数学期望
(3)若该市食品生产企业的考核成绩X服从正态分布
其中
近似为50家食品生产企业考核成绩的平均数
,
近似为样本方差
,经计算得
,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).
附参考数据与公式:
![]()
![]()
则
,
.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,直角梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点P,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】执行如图所示的程序框图,正确的是( )
![]()
A.若输入a,b,c的值依次为1,2,4,则输出的值为5
B.若输入a,b,c的值依次为2,3,5,则输出的值为7
C.若输入a,b,c的值依次为3,4,5,则输出的值为15
D.若输入a,b,c的值依次为2,3,4,则输出的值为10
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于
次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为
.
(1)若
,
,则在第一轮游戏他们获“优秀小组”的概率;
(2)若
则游戏中小明小亮小组要想获得“优秀小组”次数为
次,则理论上至少要进行多少轮游戏才行?并求此时
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
,圆
,如图,
分别交
轴正半轴于点
.射线
分别交
于点
,动点
满足直线
与
轴垂直,直线
与
轴垂直.
![]()
(1)求动点
的轨迹
的方程;
(2)过点
作直线
交曲线
与点
,射线
与点
,且交曲线
于点
.问:
的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com