科目: 来源: 题型:
【题目】(13分)
在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图所示).
(Ⅰ)求得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某央企在一个社区随机采访男性和女性用户各50名,统计他(她)们一天()使用手机的时间,其中每天使用手机超过6小时(含6小时)的用户称为“手机迷”,否则称其为“非手机迷”,调查结果如下:
男性用户的频数分布表
男性用户日用时间分组() | |||||
频数 | 20 | 12 | 8 | 6 | 4 |
女性用户的频数分布表
女性用户日用时间分组() | |||||
频数 | 25 | 10 | 6 | 8 | 1 |
(1)分别估计男性用户,女性用户“手机迷”的频率;
(2)求男性用户每天使用手机所花时间的中位数;
(3)求女性用户每天使用手机所花时间的平均数与标准差(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点.对任意的点,定义.任取点,,记,,若此时成立,则称点,相关.
(1)分别判断下面各组中两点是否相关,并说明理由;
①,;②,.
(2)给定,,点集.
()求集合中与点相关的点的个数;
()若,且对于任意的,,点,相关,求中元素个数的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了推进分级诊疗,实现“基层首诊、双向转诊、急慢分治、上下联动”的诊疗模式,某地区自2016年起全面推行家庭医生签约服务.已知该地区居民约为2000万,从1岁到101岁的居民年龄结构的频率分布直方图如图1所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁的居民,各年龄段被访者签约率如图2所示.
(1)估计该地区年龄在71~80岁且已签约家庭医生的居民人数;
(2)若以图2中年龄在71~80岁居民签约率作为此地区该年龄段每个居民签约家庭医生的概率,则从该地区年龄在71~80岁居民中随机抽取两人,求这两人中恰有1人已签约家庭医生的概率;
(3)据统计,该地区被访者的签约率约为.为把该地区年满18周岁居民的签约率提高到以上,应着重提高图2中哪个年龄段的签约率?并结合数据对你的结论作出解释.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥中,底面为直角梯形,,,,为线段的中点,底面,点是棱的中点,平面与棱相交于点.
(1)求证:;
(2)若与所成的角为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,给出下列三个结论:
①当时,函数的单调递减区间为;
②若函数无最小值,则的取值范围为;
③若且,则,使得函数.恰有3个零点,,,且.
其中,所有正确结论的序号是______.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为( )
A.9B.10C.11D.12
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段的延长线上且满足点的轨迹为.
(1)求曲线的极坐标方程;
(2)设点的极坐标为,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com