科目: 来源: 题型:
【题目】如图,已知
为等边三角形,
为等腰直角三角形,
.平面
平面ABD,点E与点D在平面ABC的同侧,且
,
.点F为AD中点,连接EF.
![]()
(1)求证:
平面ABC;
(2)求证:平面
平面ABD.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
在
上有定义,实数
和
满足
.若
在区间
上不存在最小值,则称
在区间
上具有性质P.
(1)当
,且
在区间
上具有性质P,求常数C的取值范围;
(2)已知
,且当
时,
,判别
在区间
上是否具有性质P;
(3)若对于满足
的任意实数
和
,
在区间
上具有性质P,且对于任意
,当
时,有:
,证明:当
时,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系
中,抛物线
的焦点为F,过F的直线
交
于B,C两点.
(1)若
垂直于轴,且线段BC的长为1,求
的方程;
(2)若
的斜率为
,求
;
(3)设抛物线上异于
的点A满足
,若
的重心在
轴上,求
的重心的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】业界称“中国芯”迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为A(A为常数)元,之后每年会投入一笔研发资金,n年后总投入资金记为
,经计算发现当
时,
近似地满足
,其中
,
为常数,
.已知3年后总投入资金为研发启动是投入资金的3倍,问:
(1)研发启动多少年后,总投入资金是研发启动时投入资金的8倍;
(2)研发启动后第几年投入的资金最多?
查看答案和解析>>
科目: 来源: 题型:
【题目】给定整数
,数列
、
、
、
每项均为整数,在
中去掉一项
,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为
. 将
、
、
、
中的最小值称为数列
的特征值.
(Ⅰ)已知数列
、
、
、
、
,写出
、
、
的值及
的特征值;
(Ⅱ)若
,当
,其中
、
且
时,判断
与
的大小关系,并说明理由;
(Ⅲ)已知数列
的特征值为
,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市《城市总体规划(
年)》提出到
年实现“
分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身
个方面构建“
分钟社区生活圈”指标体系,并依据“
分钟社区生活圈”指数高低将小区划分为:优质小区(指数为
)、良好小区(指数为
)、中等小区(指数为
)以及待改进小区(指数为
)
个等级.下面是三个小区
个方面指标的调查数据:
![]()
注:每个小区“
分钟社区生活圈”指数
,其中
、
、
、
为该小区四个方面的权重,
、
、
、
为该小区四个方面的指标值(小区每一个方面的指标值为
之间的一个数值).
现有
个小区的“
分钟社区生活圈”指数数据,整理得到如下频数分布表:
分组 |
|
|
|
|
|
频数 |
|
|
|
|
|
(Ⅰ)分别判断
、
、
三个小区是否是优质小区,并说明理由;
(Ⅱ)对这
个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取
个小区进行调查,若在抽取的
个小区中再随机地选取
个小区做深入调查,记这
个小区中为优质小区的个数
,求
的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
(
为常数).
(i)给出下列结论:
①曲线
为中心对称图形;
②曲线
为轴对称图形;
③当
时,若点
在曲线
上,则
或
.
其中,所有正确结论的序号是_________.
(ii)当
时,若曲线
所围成的区域的面积小于
,则
的值可以是_________.(写出一个即可)
查看答案和解析>>
科目: 来源: 题型:
【题目】若点
为点
在平面
上的正投影,则记
.如图,在棱长为
的正方体
中,记平面
为
,平面
为
,点
是棱
上一动点(与
、
不重合)
,
.给出下列三个结论:
![]()
①线段
长度的取值范围是
;
②存在点
使得
平面
;
③存在点
使得
.
其中,所有正确结论的序号是( )
A.①②③B.②③C.①③D.①②
查看答案和解析>>
科目: 来源: 题型:
【题目】已知无穷数列{an}(an∈Z)的前n项和为Sn,记S1,S2,…,Sn中奇数的个数为bn.
(1)若an=n,请写出数列{bn}的前5项;
(2)求证:“a1为奇数,ai(i=2,3,4,…)为偶数”是“数列{bn}是单调递增数列”的充分不必要条件;
(3)若ai=bi,i=1,2,3,…,求数列{an}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com