科目: 来源: 题型:
【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为
六个小组(所调查的居民平均每天运动时长均在
内),得到的频率分布直方图如图所示.
![]()
(1)求出图中
的值,并估计这
名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在
时间段内应抽出多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在等腰
中,
,
,
分别为
,
的中点,
为
的中点,
在线段
上,且
。将
沿
折起,使点
到
的位置(如图2所示),且
。
![]()
(1)证明:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值
查看答案和解析>>
科目: 来源: 题型:
【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.
![]()
(1)根据条形统计图,估计本届高三学生本科上线率.
(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.
(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);
(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为
,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.
可能用到的参考数据:取
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为
(
为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线C的普通方程和直线
的直角坐标方程;
(Ⅱ)设点
.若直线
与曲线C相交于A,B两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f (x)=ax﹣ex(a∈R),g(x)=
.
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形
的棱长为1,线段
上有两个动点
.
,且
,则下列结论中错误的是( )
![]()
A.
;
B.三棱锥
体积是定值;
C.二面角
的平面角大小是定值;
D.
与平面
所成角等于
与平面
所成角;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
,椭圆
:
的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为坐标原点. 设过点
的动直线
与
相交于
两点.
(1)求
的方程;
(2)是否存在这样的直线
,使得
的面积为
,若存在,求出
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com