科目: 来源: 题型:
【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数为“同比不减函数”.
(1)求证:对任意正常数,都不是“同比不减函数”;
(2)若函数是“同比不减函数”,求的取值范围;
(3)是否存在正常数,使得函数为“同比不减函数”,若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列,定义为数列的一阶差分数列,其中.
(1)若,试判断是否是等差数列,并说明理由;
(2)若,,求数列的通项公式;
(3)对(2)中的数列,是否存在等差数列,使得对一切都成立,若存在,求出数列的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】正数数列、满足:≥,且对一切k≥2,k,是与的等差中项,是与的等比中项.
(1)若,,求,的值;
(2)求证:是等差数列的充要条件是为常数数列;
(3)记,当n≥2(n)时,指出与的大小关系并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:双曲线:的左、右焦点分别为,,过作直线交轴于点.
(1)当直线平行于的一条渐近线时,求点到直线的距离;
(2)当直线的斜率为时,在的右支上是否存在点,满足?若存在,求出点的坐标;若不存在,说明理由;
(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某创业团队拟生产两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)
(注:利润与投资额的单位均为万元)
(1)分別将两种产品的利润、表示为投资额的函数;
(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知双曲线:.
(1)设是的左焦点,是右支上一点.若,求点的坐标;
(2)设斜率为1的直线交于、两点,若与圆相切,求证:;
(3)设椭圆:.若、分别是、上的动点,且,求证:到直线的距离是定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题
①命题“若,则”的逆命题是真命题;
②若,,则在上的投影是;
③在的二项展开式中,有理项共有4项;
④已知一组正数,,,的方差为,则数据,,,的平均数为4;
⑤复数的共轭复数是,则.
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com