科目: 来源: 题型:
【题目】对于函数
,若存在正常数
,使得对任意的
,都有
成立,我们称函数
为“
同比不减函数”.
(1)求证:对任意正常数
,
都不是“
同比不减函数”;
(2)若函数
是“
同比不减函数”,求
的取值范围;
(3)是否存在正常数
,使得函数
为“
同比不减函数”,若存在,求
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
,定义
为数列
的一阶差分数列,其中
.
(1)若
,试判断
是否是等差数列,并说明理由;
(2)若
,
,求数列
的通项公式;
(3)对(2)中的数列
,是否存在等差数列
,使得
对一切
都成立,若存在,求出数列
的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】正数数列
、
满足:
≥
,且对一切k≥2,k
,
是
与
的等差中项,
是
与
的等比中项.
(1)若
,
,求
,
的值;
(2)求证:
是等差数列的充要条件是
为常数数列;
(3)记
,当n≥2(n
)时,指出
与
的大小关系并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:双曲线
:
的左、右焦点分别为
,
,过
作直线
交
轴于点
.
![]()
(1)当直线
平行于
的一条渐近线时,求点
到直线
的距离;
(2)当直线
的斜率为
时,在
的右支上是否存在点
,满足
?若存在,求出
点的坐标;若不存在,说明理由;
(3)若直线
与
交于不同两点
、
,且
上存在一点
,满足
(其中
为坐标原点),求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某创业团队拟生产
两种产品,根据市场预测,
产品的利润与投资额成正比(如图1),
产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)
![]()
(注:利润与投资额的单位均为万元)
(1)分別将
两种产品的利润
、
表示为投资额
的函数;
(2)该团队已筹集到10 万元资金,并打算全部投入
两种产品的生产,问:当
产品的投资额为多少万元时,生产
两种产品能获得最大利润,最大利润为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知双曲线
:
.
(1)设
是
的左焦点,
是
右支上一点.若
,求
点的坐标;
(2)设斜率为1的直线
交
于
、
两点,若
与圆
相切,求证:
;
(3)设椭圆
:
.若
、
分别是
、
上的动点,且
,求证:
到直线
的距离是定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题
①命题“若
,则
”的逆命题是真命题;
②若
,
,则
在
上的投影是
;
③在
的二项展开式中,有理项共有4项;
④已知一组正数
,
,
,
的方差为
,则数据
,
,
,
的平均数为4;
⑤复数
的共轭复数是
,则
.
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com