科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,离心率为,直线l经过与椭圆交于P,Q两点.当与y轴的交点是线段的中点时,.
(1)求椭圆的方程;
(2)设直线l不垂直于x轴,若满足,求t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程.持有旅游年卡一年内可不限次畅游全市19家签约景区.为合理配置旅游资源,现对已游览某签约景区的游客进行满意度调查.随机抽取100位游客进行调查评分(满分100分),评分的频率分布直方图如图.
(1)求a的值并估计评分的平均数;
(2)为了了解游客心声,调研机构用分层抽样的方法从评分为,的游客中抽取了6名,听取他们对该景区建设的建议.现从这6名游客中选取2人,求这2人中至少有一个人的评分在内的概率;
(3)为更广泛了解游客想法,调研机构对所有评分从低到高排序的前86%游客进行了网上问卷调查并随调查表赠送小礼品,估计收到问卷调查表的游客的最高分数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为. 点为圆上任一点,且满足,以为坐标的动点的轨迹记为曲线.
(1)求圆的方程及曲线的方程;
(2)若两条直线和分别交曲线于点和,求四边形面积的最大值,并求此时的的值.
(3)已知曲线的轨迹为椭圆,研究曲线的对称性,并求椭圆的焦点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,以为坐标的动点的轨迹记为曲线.
(1)求圆的方程及曲线的方程;
(2)若两条直线和分别交曲线于点和,求四边形面积的最大值,并求此时的的值.
(3)根据曲线的方程,研究曲线的对称性,并证明曲线为椭圆.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图数表:
每一行都是首项为1的等差数列,第行的公差为,且每一列也是等差数列,设第行的第项为.
(1)证明:成等差数列,并用表示();
(2)当时,将数列分组如下:(),(),(),…(每组数的个数构成等差数列). 设前组中所有数之和为,求数列的前项和;
(3)在(2)的条件下,设是不超过20的正整数,当时,求使得不等式恒成立的所有的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】图(1)为东方体育中心,其设计方案侧面的外轮廓线如图(2)所示;曲线是以点为圆心的圆的一部分,其中,曲线是抛物线的一部分;且恰好等于圆的半径,与圆相切且.
(1)若要求米,米,求与的值;
(2)当时,若要求不超过45米,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的焦点为椭圆的右焦点,且椭圆长轴的长为4,、是椭圆上的两点;
(1)求椭圆标准方程;
(2)若直线经过点,且,求直线的方程;
(3)若动点满足:,直线与的斜率之积为,是否存在两个定点、,使得为定值?若存在,求出、的坐标;若不存在,请说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】
已知数列和满足:,,,其中为实数,为正整数.
(Ⅰ)对任意实数,证明:数列不是等比数列;
(Ⅱ)证明:当时,数列是等比数列;
(Ⅲ)设(为实常数),为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称为上的高调函数. 如果定义域为的函数是奇函数,当时,,且为上的8高调函数,那么实数的取值范围为____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的定义域是,且,,当时,.
(1)判断的奇偶性,并说明理由;
(2)求在区间上的解析式;
(3)是否存在整数,使得当时,不等式有解?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com