科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是梯形,
,
,
是正三角形,
为
的中点,平面
平面
.
![]()
(1)求证:
平面
;
(2)在棱
上是否存在点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若单位时间内煤气输出量
与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程:在平面直角坐标系
中,曲线
:
(
为参数),在以平面直角坐标系的原点为极点、
轴的正半轴为极轴,且与平面直角坐标系
取相同单位长度的极坐标系中,曲线
:
.
(1)求曲线
的普通方程以及曲线
的平面直角坐标方程;
(2)若曲线
上恰好存在三个不同的点到曲线
的距离相等,求这三个点的极坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
的直角顶点
在
轴上,点
为斜边
的中点,且
平行于
轴.
(Ⅰ)求点
的轨迹方程;
(Ⅱ)设点
的轨迹为曲线
,直线
与
的另一个交点为
.以
为直径的圆交
轴于
即此圆的圆心为
,
求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
![]()
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间
与乘客等候人数
之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这
组数据中选取
组数据求线性回归方程,再用剩下的
组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值都不超过
,则称所求方程是“恰当回归方程”.
(1)从这
组数据中随机选取
组数据后,求剩下的
组数据的间隔时间不相邻的概率;
(2)若选取的是后面
组数据,求
关于
的线性回归方程
,并判断此方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过
人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:![]()
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知顶点是坐标原点的抛物线
的焦点
在
轴正半轴上,圆心在直线
上的圆
与
轴相切,且
关于点
对称.
(1)求
和
的标准方程;
(2)过点
的直线
与
交于
,与
交于
,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=exsinx,g(x)为f(x)的导函数,
(1)求f(x)的单调区间;
(2)当x∈[
,π],证明:f(x)+g(x)(π﹣x)≥0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com