科目: 来源: 题型:
【题目】某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了20名男生和20名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的茎叶图.
![]()
如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.
(1)根据频率分布直方图填写下面
列联表,并据此资料,在犯错误的概率不超过10%的前提下,你是否认为“书虫”与性别有关?
男生 | 女生 | 总计 | |
书虫 | |||
非书虫 | |||
总计 |
附:![]()
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.814 | 5.024 |
(2)在所抽取的20名女生中,从过去一整年内课外阅读的书数(本)不低于86本的学生中随机抽取两名,求抽出的两名学生都是“书虫”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】三棱锥
中,点P是
斜边AB上一点.给出下列四个命题:
①若
平面ABC,则三棱锥
的四个面都是直角三角形;
②若S在平面ABC上的射影是斜边AB的中点P,则有
;
③若
,
,
,
平面ABC,则
面积的最小值为3;
④若
,
,
,
平面ABC,则三棱锥
的外接球体积为
.
其中正确命题的序号是__________.(把你认为正确命题的序号都填上)
查看答案和解析>>
科目: 来源: 题型:
【题目】我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程
中,p为“隅”,q为“实”.即若
的大斜、中斜、小斜分别为a,b,c,则
.已知点D是
边AB上一点,
,
,
,
,则
的面积为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点
为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线
的参数方程为
,曲线
的极坐标方程为![]()
(1)求曲线
的直角坐标方程
(2)设直线
与曲线
相交于
两点,
时,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
![]()
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记
表示2台机器三年内共需更换的易损零件数,
表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求
的分布列;
(Ⅱ)若要求
,确定
的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在
与
之中选其一,应选用哪个?
查看答案和解析>>
科目: 来源: 题型:
【题目】中心在原点,焦点在
轴上的椭圆,下顶点
,且离心率
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过点
且斜率为
的直线
交椭圆于
,
两点.在
轴上是否存在定点
,使得
恒成立?若存在,求出点
坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线
与椭圆
交于
两点,
是椭圆右顶点,已知直线
的斜率为
,
的外接圆半径为
.
![]()
(1)求椭圆的方程;
(2)若椭圆上有两点
,使
的平分线垂直
,且
,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:
分别加以统计,得到如图所示的频率分布直方图.
![]()
(1)从样本中日平均生产件数不足60的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(2)规定日平均生产件数不少于80的为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
P( | 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
附:![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
.
![]()
(Ⅰ)求证:平面
面
;
(Ⅱ)过
的平面交
于点
,若平面
把四面体
分成体积相等的两部分,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com