精英家教网 > 试题搜索列表 >已知矩阵M=4,-1,2,-1,向量α=7,5

已知矩阵M=4,-1,2,-1,向量α=7,5答案解析

科目:gzsx 来源: 题型:

(2012•徐州模拟)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
21
34

(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
x=-1+rcosθ
y=rsinθ
为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=2
2
.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
4
3

查看答案和解析>>

科目:gzsx 来源: 题型:

已知矩阵M有特征值1=4及对应的一个特征向量e1=,并有特征值2=-1及对应的一个特征向量e2=.

(1)求矩阵M;(2)求M2 008e2.

查看答案和解析>>

科目:gzsx 来源:2012-2013学年江苏省泰州市姜堰市高三(下)期初数学试卷(解析版) 题型:解答题

已知矩阵M=有特征值λ1=4及对应的一个特征向量
(1)求矩阵M;
(2)求曲线5x2+8xy+4y2=1在M的作用下的新曲线方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

选做题(选修4—2:矩阵与变换)已知矩阵M有特征值λ1=4及对应的一个特征向量e1=,并有特征值λ2=-1及对应的一个特征向量e2=.

(1)求矩阵M;

(2)求M2 008e2.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知矩阵M有特征值λ1=8及对应的一个特征向量e1=
1
1
,并有特征值λ2=2及对应的一个特征向量e2=
1
-2
,则矩阵M=
 

查看答案和解析>>

科目:gzsx 来源: 题型:

[选做题]在下面A,B,C,D四个小题中只能选做两题,每小题10分,共20分.
A.选修4-1:几何证明选讲
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,判断BE是否平分∠ABC,并说明理由.
B.选修4-2:短阵与变换
已知矩阵M=
1
2
0
02
,矩阵M对应的变换把曲线y=sinx变为曲线C,求C的方程.
C.选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=4sin(θ+
π
4
)
,求曲线C的普通方程.
D.选修4-5:不等式选讲
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•盐城三模)选修4-2:矩阵与变换
已知矩阵M=
.
1a
b1
.
对应的变换将点A(1,1)变为A′(0,2),将曲线C:xy=1变为曲线C′.
(1)求实数a,b的值;
(2)求曲线C′的方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•南京一模)选修4-2:矩阵与变换
已知矩阵M=
01
10
N=
0-1
10
.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•泉州模拟)选修4-2:矩阵与变换
已知矩阵M=
a2
-13
的一个特征值为1.
(Ⅰ)求矩阵M的另一个特征值;
(Ⅱ)设α=
3
2
,求M5α.

查看答案和解析>>

科目:gzsx 来源: 题型:

选修4-2:矩阵与变换
已知矩阵M=
a    1
c    0
的一个特征值为-l,属于它的一个特征向量e1=
  1
-3

(1)求矩阵M;
(2)若点P(1,1)经过矩阵M所对应的变换得到点Q,求点Q的坐标.

查看答案和解析>>

科目:gzsx 来源: 题型:

选修4-2:矩阵与变换
已知矩阵M=
1    x
2    1
的一个特征值为-1,求其另一个特征值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知矩阵M=
1b
c2
有特征值λ1=4及对应的一个特征向量
e1
=
2′
3′

(1)求矩阵M;
(2)求曲线5x2+8xy+4y2=1在M的作用下的新曲线方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
01
10
,N=
0-1
10

(Ⅰ)求矩阵NN;
(Ⅱ)若点P(0,1)在矩阵M对应的线性变换下得到点P′,求P′的坐标.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程是
x=t
y=2t+1
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是ρ=2cosθ(Ⅰ)在直角坐标系xOy中,求圆C的直角坐标方程
(Ⅱ)求圆心C到直线l的距离.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函数y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

[选修4-2:矩阵与变换]
已知矩阵M=
1
c
b
2
有特征值λ1=4及对应的一个特征向量
e1
=
2
3
,求曲线5x2+8xy+4y2=1在M的作用下的新曲线方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知矩阵M=
2a
bc
,其中a,b,c∈R,若点P(1,-2)在矩阵M的变换下得到点Q(-4,0),且属于特征值-1的一个特征向量是
1
-1
,求a,b,c之值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知矩阵M=
2a
21
,其中a∈R,点P(1,-2)在矩阵M的变换下得到点P′(-4,0),则实数a=
3
3

查看答案和解析>>

科目:gzsx 来源: 题型:

(1)已知矩阵M=
2a
21
,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)
(i)求实数a的值;
(ii)求矩阵M的特征值及其对应的特征向量.
(2)在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(a∈R)的圆心为P(x0,y0),求2x0-y0的取值范围.
(3)已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
①求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

②求实数m的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>