精英家教网 > 试题搜索列表 >已知x2-5+1=0,求x2+x负平方

已知x2-5+1=0,求x2+x负平方答案解析

科目:czsx 来源: 题型:解答题

已知:关于x的一元二次方程x2-(1+2k)x+k2-2=0有两个实数根.
(1)求k的取值范围;
(2)当k为负整数时,抛物线y=x2-(1+2k)x+k2-2与x轴的交点是整数点,求抛物线的解析式;
(3)若(2)中的抛物线与y轴交于点A,过A作x轴的平行线与抛物线交于点B,连接OB,将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△OAB的内部(不包括△OAB的边界),求n的取值范围.

查看答案和解析>>

科目:czsx 来源:2012年北京市门头沟区中考数学一模试卷(解析版) 题型:解答题

已知:关于x的一元二次方程x2-(1+2k)x+k2-2=0有两个实数根.
(1)求k的取值范围;
(2)当k为负整数时,抛物线y=x2-(1+2k)x+k2-2与x轴的交点是整数点,求抛物线的解析式;
(3)若(2)中的抛物线与y轴交于点A,过A作x轴的平行线与抛物线交于点B,连接OB,将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△OAB的内部(不包括△OAB的边界),求n的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•门头沟区一模)已知:关于x的一元二次方程x2-(1+2k)x+k2-2=0有两个实数根.
(1)求k的取值范围;
(2)当k为负整数时,抛物线y=x2-(1+2k)x+k2-2与x轴的交点是整数点,求抛物线的解析式;
(3)若(2)中的抛物线与y轴交于点A,过A作x轴的平行线与抛物线交于点B,连接OB,将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△OAB的内部(不包括△OAB的边界),求n的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
 (1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:czsx 来源: 题型:

已知关于x的一元二次方程kx2+(3k+1)x+2k+1=0.
(1)求证:该方程必有两个实数根;
(2)若该方程只有整数根,求k的整数值;
(3)在(2)的条件下,在平面直角坐标系中,若二次函数y=(k+1)x2+3x+m与x轴有两个不同的交点A和B(A在B左侧),并且满足OA=2•OB,求m的非负整数值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

作业宝已知抛物线y=数学公式mx2-数学公式mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知:在平面直角坐标系xOy中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,点A在x轴负半轴上,点B在x轴正半轴上,且CO=BO=3AO,AB=4,抛物线的顶点为D.
(1)求这个二次函数的解析式;
(2)点E(0,n)在y轴正半轴上,且位于点C的下方.当n在什么范围内取值时∠CBD<∠CED?当n在什么范围内取值时∠CBD>∠CED?
(3)若过点B的直线垂直于BD且与直线CD交于点P,求点P的坐标.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知关于x的一元二次方程kx2+(3k+1)x+2k+1=0.
(1)求证:该方程必有两个实数根;
(2)若该方程只有整数根,求k的整数值;
(3)在(2)的条件下,在平面直角坐标系中,若二次函数y=(k+1)x2+3x+m与x轴有两个不同的交点A和B(A在B左侧),并且满足OA=2•OB,求m的非负整数值.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

已知关于x的一元二次方程kx2+(3k+1)x+2k+1=0.
(1)求证:该方程必有两个实数根;
(2)若该方程只有整数根,求k的整数值;
(3)在(2)的条件下,在平面直角坐标系中,若二次函数y=(k+1)x2+3x+m与x轴有两个不同的交点A和B(A在B左侧),并且满足OA=2•OB,求m的非负整数值.

查看答案和解析>>

科目:czsx 来源: 题型:

已知关于x的一元二次方程kx2+(3k+1)x+2k+1=0.

(1)求证:该方程必有两个实数根.

(2)若该方程只有整数根,求k的整数值

(3)在(2)的条件下,在平面直角坐标系中,若二次函数y=(k+1)x2+3x+m与x轴有两个不同的交点A和B(A在B左侧),并且满足OA=2·OB,求m的非负整数值.

查看答案和解析>>

科目:czsx 来源: 题型:

已知方程x2-6x+m(2x+m)-7=0有两个不相等的实根,两根的平方和为10,且两根分别为A、B的横坐标(如图1A在x轴的负半轴上,B在x轴的正半轴上),以AB为直径作圆M交y轴于C、D,E为弧BD上一点.

(1)求m的值;
(2)若BK⊥EC于K,连ED,KE=
1
2
,求ED的长;
(3)Q为EB延长线上一点,⊙P过C、E、Q交DE的延长线于F,连AE,当E在弧BD上移动时,求证:
EC+ED
EA
=
3
EC+EF
EQ

查看答案和解析>>

科目:czsx 来源: 题型:

已知:在平面直角坐标系xOy中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,点A在x轴负半轴上,点B在x轴正半轴上,且CO=BO=3AO,AB=4,抛物线的顶点为D.
(1)求这个二次函数的解析式;
(2)点E(0,n)在y轴正半轴上,且位于点C的下方.当n在什么范围内取值时∠CBD<∠CED?当n在什么范围内取值时∠CBD>∠CED?
(3)若过点B的直线垂直于BD且与直线CD交于点P,求点P的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

已知:二次函数y=x2-mx+
3
4
m+1(m为常数).
(1)若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上.
①求m的值;
②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式;
(2)当0≤x≤2时,求函数y=x2-mx+
3
4
m+1的最小值(用含m的代数式表示).

查看答案和解析>>

科目:gzsx 来源: 题型:

(1)选修4-2:矩阵与变换
已知矩阵M=(
2a
2b
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
x=sinα
y=2cos2α-2

(a为餓),曲线D的鍵标方程为ρsin(θ-
π
4
)=-
3
2
2

(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的结论求函数y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

(1)已知矩阵A=
33
24
,向量β=
6
8

(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、(1,
π
2
)
,曲线C的参数方程为
x=rcosα
y=rsinα
为参数,r>0)
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值时x的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

3.已知,如图,在平面直角坐标系中,点A坐标为(4,0),点B坐标为(0,-4),C为y轴负半轴上一点,且OC=AB,抛物线y=$\sqrt{2}$x2+bx+c的图象经过A,C两点.
(1)求此抛物线的解析式;
(2)将∠OAB的顶点A沿AB平移,在平移过程中,保持∠OAB的大小不变,顶点A记为A1,一边AB记为A1B1,A1与B重合时停止平移.A1B1与y轴交于点D.当△A1OD是以A1D为腰的等腰三角形时,求点A1的坐标;
(3)在(2)问的条件下,直线A1B1与x轴交于点E,P为(1)中抛物线上一动点,直线PA1交x轴于点G,在直线EB1下方的抛物线上是否存在一点P,使得△PDA1与△GEA1的面积之比为1+2$\sqrt{2}$:1?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

(1)已知二次函数y=ax2+bx+c(a≠0)的图象开口向下,并经过点(-1,2),(1,0).下列命题其中一定正确的是______.
(把你认为正确结论的序号都填上,少填或错填不给分).
①当x≥0时,函数值y随x的增大而增大
②当x≤0时,函数值y随x的增大而减小
③存在一个正数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小
④存在一个负数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小,
⑤a+2b>-2c
(2)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2009-2010学年九年级(上)数学期末检测模拟试卷(三)(解析版) 题型:解答题

(1)已知二次函数y=ax2+bx+c(a≠0)的图象开口向下,并经过点(-1,2),(1,0).下列命题其中一定正确的是______.
(把你认为正确结论的序号都填上,少填或错填不给分).
①当x≥0时,函数值y随x的增大而增大
②当x≤0时,函数值y随x的增大而减小
③存在一个正数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小
④存在一个负数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小,
⑤a+2b>-2c
(2)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2008-2009学年浙江省湖州市白雀学校九年级(上)期中数学试卷(解析版) 题型:解答题

(1)已知二次函数y=ax2+bx+c(a≠0)的图象开口向下,并经过点(-1,2),(1,0).下列命题其中一定正确的是______.
(把你认为正确结论的序号都填上,少填或错填不给分).
①当x≥0时,函数值y随x的增大而增大
②当x≤0时,函数值y随x的增大而减小
③存在一个正数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小
④存在一个负数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小,
⑤a+2b>-2c
(2)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由.

查看答案和解析>>