8.(09·广东物理·6)如图所示,在一个粗糙水平面上,彼此靠近地放置两个带同种电荷的小物块。由静止释放后,两个物块向相反方向运动,并最终停止。在物块的运动过程中,下列表述正确的是 ( A )
A.两个物块的电势能逐渐减少
B.物块受到的库仑力不做功
C.两个物块的机械能守恒
D. 物块受到的摩擦力始终小于其受到的库仑力
解析:由于两电荷电性相同,则二者之间的作用力为斥力,因此在远离过程中,电场力做正功,则电势能逐渐减少,A正确;B错误;由于运动过程中,有重力以外的力电场力和摩擦力做功,故机械能不守恒,C错误;在远离过程中开始电场力大于摩擦力,后来电场力小于摩擦力。
7.
(09·上海物理·7)位于A、B处的两个带有不等量负电的点电荷在平面内电势分布如图所示,图中实线表示等势线,则
( CD
)
A.a点和b点的电场强度相同
B.正电荷从c点移到d点,电场力做正功
C.负电荷从a点移到c点,电场力做正功
D.正电荷从e点沿图中虚线移到f点,电势能先减小后增大
解析:电场线的疏密可以表示电场的强弱,可见A错误;正电荷从c点移到d点,电场力做负功,负电荷从a点移到c点,电场力做正功,所以B错误,C正确;正电荷从e点沿图中虚线移到f点,电场力先做正功,后做负功,但整个过程电场力做正功,D正确。
6.(09·上海物理·3)两带电量分别为q和-q的点电荷放在x轴上,相距为L,能正确反映两电荷连线上场强大小E与x关系的是图 ( A )
![]()
解析:由等量异种点电荷的电场强度的关系可知,在两电荷连线中点处电场强度最小,但不是零,从两点电荷向中点电场强度逐渐减小,因此A正确。
5.(09·北京·20)图示为一个内、外半径分别为R1和R2的圆环状均匀带电平面,其单位面积带电量为
。取环面中心O为原点,以垂直于环面的轴线为x轴。设轴上任意点P到O点的的距离为x,P点电场强度的大小为E。下面给出E的四个表达式(式中k为静电力常量),其中只有一个是合理的。你可能不会求解此处的场强E,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,E的合理表达式应为 ( B )
A.![]()
B.![]()
C.![]()
D.![]()
解析:当R1=0时,对于A项而言E=0,此时带电圆环演变为带电圆面,中心轴线上一点的电场强度E>0,故A项错误;当x=0时,此时要求的场强为O点的场强,由对称性可知EO=0,对于C项而言,x=0时E为一定值,故C项错误。当x→∞时E→0,而D项中E→4πκσ故D项错误;所以正确选项只能为B。
4.
(09·北京·19)如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场。一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出。若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b ( C
)
A.穿出位置一定在O′点下方
B.穿出位置一定在O′点上方
C.运动时,在电场中的电势能一定减小
D.在电场中运动时,动能一定减小
解析:a粒子要在电场、磁场的复合场区内做直线运动,则该粒子一定做匀速直线运动,
故对粒子a有:Bqv=Eq 即只要满足E =Bv无论粒子带正电还是负电,粒子都可以沿直线穿出复合场区,当撤去磁场只保留电场时,粒子b由于电性不确定,故无法判断从O’点的上方或下方穿出,故AB错误;粒子b在穿过电场区的过程中必然受到电场力的作用而做类似于平抛的运动,电场力做正功,其电势能减小,动能增大,故C项正确D项错误。
3.
(09·北京·16)某静电场的电场线分布如图所示,图中P、Q两点的电场强度的大小分别为EP和EQ,电势分别为UP和UQ,则
( A )
A.EP>EQ,UP>UQ
B.EP>EQ,UP<UQ
C.EP<EQ,UP>UQ
D.EP<EQ,UP<UQ
解析:从图可以看出P点的电场线的密集程度大于Q点的密集程度,故P点的场强大于Q点的场强,因电场线
的方向由P指向Q,而沿电场线的方向电势逐渐降低, P点的电势高于Q点的电势,故A项正确。
2.
(09·全国卷Ⅱ·19)图中虚线为匀强电场中与场强方向垂直的等间距平行直线。两粒子M、N质量相等,所带电荷的绝对值也相等。现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示。点a、b、c为实线与虚线的交点,已知O点电势高于c 点。若不计重力,则 ( BD )
A. M带负电荷,N带正电荷
B. N在a点的速度与M在c点的速度大小相同
C. N在从O点运动至a点的过程中克服电场力做功
D. M在从O点运动至b点的过程中,电场力对它做的功等于零
解析:本题考查带电粒子在电场中的运动.图中的虚线为等势线,所以M点从O点到b点的过程中电场力对粒子做功等于零,D正确.根据MN粒子的运动轨迹可知N受到的电场力向上M受到的电场力向下,电荷的正负不清楚但为异种电荷.A错.o到a的电势差等于o到c的两点的电势差,而且电荷和质量大小相等,而且电场力都做的是正功根据动能定理得a与c两点的速度大小相同,但方向不同,B对。
1.
(09·年全国Ⅰ·18)如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN,P点在y轴的右侧,MP⊥ON,则 ( AD
)
A.M点的电势比P点的电势高
B.将负电荷由O点移动到P点,电场力做正功
C. M、N 两点间的电势差大于O、M两点间的电势差
D.在O点静止释放一带正电粒子,该粒子将沿y轴做直线运动
解析:本题考查电场、电势、等势线、以及带电粒子在电场中的运动.由图和几何关系可知M和P两点不处在同一等势线上而且有
,A对.将负电荷由O点移到P要克服电场力做功,及电场力做负功,B错.根据
,O到M的平均电场强度大于M到N的平均电场强度,所以有
,C错.从O点释放正电子后,电场力做正功,该粒子将沿y轴做加速直线运动。
2、在匀强电场中的偏转
如图所示,板长为L,板间距离为d,板间电压为U,带电粒子沿平行于带电金属板以初速度v0进入偏转电场,飞出电场时速度的方向改变角α。
①知道在偏转电场中的两个分运动:垂直电场方向的匀速运动,vx=v0,平行电场方向的初速度为零,加速度为Eq/m的匀加速直线运动
②偏向角tanα=qUL/mdv02
推导:在电场中运动的时间t=L/v0………①
在电场中的加速度a=qU/dm………②
飞出电场时竖直方向速度vy=at………③
偏转角的正切值tanα=vy/v0……………④ 由①②③④可得tanα=qUL/mdv02
③飞出电场时,竖直方向位移y=½at2=qUL2/2mdv02
④经同一加速电场由静止加速的两个质量、电量均不同的粒子,进入同一偏转电场,飞出时偏转角相同U0q=½mv
……① tanα=qUL/mdv02……②
由①②得tanα=UL/2dU0 所以两粒子的偏转角相同与m与q无关.
注意:这里的U与U0不可约去,因为这是偏转电场的电压与加速电场的电压,二者不一定相等.
⑤沿速度v反方向延长交MN交于Q点,则QN=L/2, QN=y/tanα=L/2
⑥粒子在电场中运动,一般不计粒子的重力,个别情况下需要计重力,题目中会说时或者有明显的暗示。
[例3]一带电粒子从静止经加速电压U1的加速电场加速后进入板间距离为d,板间电势差为U2的偏转电场,当它飞出偏转电场时,偏转角为θ,要使偏转角θ增大,则需要( )
A.使粒子的荷质比变大(q/m) B.其它条件不变,只使U1变大
C.其它条件不变,只使U2变大 D.其它条件不变,只使d变大
解析:这里是经加速电场加速后进入偏转电场tanα=U2L/2dU1
所以这里与荷质比无关.所以A错.从tanα=U2L/2dU1可知: B错, C对, D错. 答案:c
点评:注意经加速电场加速的情况,应当注意从tanα=U2L/2dU1角度讨论问题.
[例5]长为l的平行金属板,板间形成匀强电场,一个带电为十q、质量为m的带电粒子,以初速v0紧贴上板垂直于电场线方向射入该电场,刚好从下板边缘射出,末速度恰与下板成300角,如图所示.求:(1)粒子未速度的大小;(2)匀强电场的场强; (3)两板间的距离d.
解法一:由牛顿定律和运动学公式求解.
(1)由速度矢量图8-63所示,得粒子束速度v=v0/cos300=2
v0/3
(2)粒子在电场中运动时间t=l/v0,粒子射出电场时沿场强方向的分速度vy=v0tan300=
v0/3. 由vy=at有
v0/3=Eql/mv0.则场强E=
mv
/3ql.
(3)两板间距离 d=vyt/2=
L/6
解法二:(1)由动量定理和动能定理求解.v=v0/cos300,t=L/v0.
(2)由动量定理有 qEt=mv0tan300。E=
mv
/3ql
(3)由动能定理有 qEd=½mv2-½mv
,d=
L/6
答案:(1)2
v0/3;(2)
mv
/3ql;(3)
L/6
[例6]有三个质量相等,分别一带有正电,负电和不带电的微粒,从极板左侧中央以相同的水平初速度V先后垂直场强射入,分别落到极板A、B、C处,如图所示,则正确的有(
)
A.粒子A带正电,B不带电,C带负电
B.三个粒子在电场中运动时间相等
C、三个粒子在电场中运动的加速度aA<aB<aC
D.三个粒子到这极板时动能EA>EB>EC
解析:三粒子在水平方向上都为匀速运动,则它们在电场中的飞行时间关系为tA>tB>tC 三粒子在竖直方向上有d/2=½at2 所以aA<aB<aC,则A带正电,B不带电,C带负电. 再由动能定理知,三粒子到这极板时动能关系为EA<EB<EC. 答案:AC
说明:通过以上几个题目,请体会带电粒子,飞出偏转电场;恰好飞出,没有飞出几种情况的处理方法是什么?
[例7]如图(a)所示,A、B表示真空中水平放置的相距为d的平行金属板,板长为L,两板加电压后板间的电场可视为匀强电场,。现在A、B两板间加上如图(b)所示的周期性的交变电压,在t=0时恰有一质量为m、电量为q的粒子在板间中央沿水平方向以速度v0射入电场,忽略粒子的重力,,则下列关于粒子运动状况的表述中正确的是
A.粒子在垂直于板的方向上的分运动可能是往复振动
B.粒子在垂直于板的方向上的分运动是单向运动
C.只要周期T和电压U0的值满足一定条件,粒子就可沿与板平行的方向飞出;
D.粒子不可能沿与板平行的方向飞出
解析:当 t=0时,带电粒子飞入电场后,在垂直于板的方向上受到电场力的作用,做加速运动,若是粒子在T/2的时间内没有打在极板上,且没有飞出电场,那么在T/2-T的时间内,粒子做匀减速运动,粒子在这段时间内还没有打在极板上,同时还没有飞出电场,当t=T时,粒子沿电场方向的速度为零.在第二个周期内又将重复第一个周期的运动,……所以粒子在垂直于板的方向上的分运动不可能是往复振动,只能是单向运动.当粒子在周期T的整数倍时飞出电场时,它的速度方向是与板平行的,因为此时粒子沿电场方向(就是与板垂直方向)的速度刚好为零.由此可见选项B、C正确。
[点评]关键是分析带电粒子在电场力的作用下所作运动的特点:当电场力的方向发生变化时,带电粒子的加速度也发生了变化.当加速度方向与速度方向相同时,带电粒子作加速运动,加速度方向与速度方相反时,带电粒子做减速运动.
[例8]两平行金属板间所加电压随时间变化的规律如图所示,大量质量为m、带电量为e的电子由静止开始经电压为U0的电场加速后连续不断地沿两平行金属板间的中线射入,若两板间距恰能使所有子都能通过.且两极长度使每个电子通过两板均历时3t0,电子所受重力不计,试求:
①电子通过两板时侧向位移的最大值和最小值.
②侧向位移最大和最小的电子通过两板后的动能之比.
[解析]①电子在t=2 nt0(其中:n= 0、1、2、……)时刻进入电场,电子通过两极的侧向位移最大,在t=(2n+l)t0(其中n=0、l、2、…)时刻进入电场电子通过两板侧向位移最小.电子侧向位移最大时,进入电场在沿电场线方向上作初速度为零的匀加速运动,再作匀速运动,后作初速度不为零的匀加速运动,各段运动的时间均为t0;当电子侧向位移最小时,在电场线上只有在第二个t0的时间开始作初速度为零的匀加速运动,在第三个t0的时间作匀速运动.电子进入偏转电场后,在电场中的加速度均为a=eUO/md,电子侧向最大位移为ymax= a t02/2+a t02+a t02+a t02/2=3a t02=3eU0 t02/md。 ymax=d/2
由以上两式解得ymax=t0
; d=2ymax=2 t0
;;电子侧向最小位移为ymin=a t02/2+a t02= ymax/2=t0
ymin=d/4
②电子离开偏转电场时的动能等于加速电场和偏转电场电场力做功之和.当电子的侧向位移为最大时,电子在电场中加速(只有加速,电场力才做功).运动的距离为y1=2 ymax /3=d/3,电子的侧向位移最小时,电子在电场中加速运动的距离为y2=ymin/3=d/12,侧向位移最大的电子动能为 Ekmax=eUO+eUO· y1/d=4eUO/3,侧向位移最小的电子动能为Ekmin= eUO+eUO·y2/d=13eUO/12,故Ekmax∶Ekmin=16∶13
点评:电子在电场中的分段运动分析清楚后,在电场中侧向位移是可求的,电子离开偏转电场时的动能则必须注意到电子进入两平行金属板后,在加速阶段有电场力对电子做功,在无电场时的匀速运动阶段没有电场力做功.
![]()
[例8]北京静电透镜是利用静电场使电子束会聚或发散的一种装置,其中某部分静电场的分布如下图所示。虚线表示这个静电场在xoy平面内的一簇等势线,等势线形状相对于ox轴、oy轴对称。等势线的电势沿x轴正向增加,且相邻两等势线的电势差相等。一个电子经过P点(其横坐标为-x0)时,速度与ox轴平行。适当控制实验条件,使该电子通过电场区域时仅在ox轴上方运动。在通过电场区域过程中,该电子沿y方向的分速度vy随位置坐标x变化的示意图是( D )
解析:电子在Y轴方向的分速度Vy变化的原因,应为Y方向上的电场力作用,给出ox轴上方的电场线示意图,注意电场线与等势线垂直如图所示,则x<0的范围,电场有沿Y轴负向的分量,电子先向Y轴负向获得分速度,A,C选项排除,经过Y轴后,电场有对电子向上的力作用,故Vy将减小,但在x方向上一直在加速,因此当其横坐标为+x时,电子并未回到与P点对称的位置,由功能关系知,Vy不会为零,因此选D.
[例9]下图是某种静电分选器的原理示意图。两个竖直放置的平行金属板带有等量异号电荷,形成匀强电场。分选器漏斗的出口与两板上端处于同一高度,到两板距离相等。混合在一起的a、b两种颗粒从漏斗出口下落时,a种颗粒带上正电,b种颗粒带上负电。经分选电场后,a、b两种颗粒分别落到水平传送带A、B上。
已知两板间距d=0.1m,,板的长度L=0.5m,,电场仅局限在平行板之间;各颗粒所带电量大小与其质量之比均为1×10-5C/kg。设颗粒进入电场时的初速度为零,分选过程中颗粒大小及颗粒间的相互作用力不计。要求两种颗粒离开电场区域时,不接触到极板但有最大偏转量。重力加速度g取10m/s2。
(1)左右两板各带何种电荷?两极板间的电压多大?
(2)若两带电平行板的下端距传送带A、B的高度H=0.3m,,颗粒落至传送带时的速度大小是多少?
(3)设颗粒每次与传送带碰撞反弹时,沿竖直方向的速度大小为碰撞前竖直方向速度大小的一半。写出颗粒第n次碰撞反弹高度的表达式。并求出经过多少次碰撞,颗粒反弹的高度小于0.01m。
解析:(1)左板带负电荷,右板带正电荷。
依题意,颗粒在平行板间的竖直方向上满足
<1>
在水平方向上满足
<2> <1><2>两式联立得 ![]()
(2)根据动能定理,颗粒落到水平传送带上满足
![]()
(3)在竖直方向颗粒作自由落体运动,它第一次落到水平传送带上沿竖直方向的速度
。反弹高度 ![]()
根据题设条件,颗粒第n次反弹后上升的高度
当
时,
[例10]20世纪50年代,物理学家发现了“电子偶素”。所谓“电子偶素”,实际上是指由一个负电子和一个正电子绕它们连线的中点旋转所形成的相对稳定的系统。已知正、负电子的质量均为me,带电荷电量均为e,静电力常量为k,普朗史常量为h。
(1)设“电子偶素”中正、负电子绕它们连线的中点做匀速圆周运动的轨道半径为r、运动速度为v,根据量子化理论上述物理量满足关系式:
。试证明n=1时,正、负电子做匀速圆周运动的速率
;
(2)已知“电子偶素”的能量为正、负电子运动的动能和系统的电势能之和。当正、负电子相距d时系统的电势能为
试求n=1时,“电子偶素”的能量E1。
解答:(1)设n=1时电子运转轨道半径为r1,此时正负电子间库仑力
①
此库仑力作为向心力
② 由题中量子化理论知n=1时
③
联立①②③式证得
④
(2)由题意可知系统的电势能
⑤
每个电子动能
⑥ 系统的能量 E=2Ek+Ep
⑦
联立①②③⑤⑥⑦式可得
⑧
带电粒子在电场中的运动与前面的带电物体在电场中的运动的不同点就是不考虑粒子的重力.带电粒子在电场中运动分两种情况:第一种是带电粒子垂直于电场方向进入电场,在沿电场力的方向上初速为零,作类似平抛运动.第二种情况是带电粒子沿电场线进入电场,作直线运动.
1、加速电场
加速电压为U,带电粒子质量为m,带电量为q,假设从静止开始加速,则根据动能定理½mv2=Uq,所以离开电场时速度为v=
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com