0  440369  440377  440383  440387  440393  440395  440399  440405  440407  440413  440419  440423  440425  440429  440435  440437  440443  440447  440449  440453  440455  440459  440461  440463  440464  440465  440467  440468  440469  440471  440473  440477  440479  440483  440485  440489  440495  440497  440503  440507  440509  440513  440519  440525  440527  440533  440537  440539  440545  440549  440555  440563  447090 

10. 解:(1)∵点在反比例函数图象上,

即反比例函数关系式为

∵点在反比例函数图象上,

∵点在一次函数的图象上,

解得

∴一次函数关系式为.

(2)当时,一次函数值为2,

.

试题详情

9. 乙题:

解:(1)因为反比例函数的图象经过点

,················································································································ 2分

.····················································································································· 3分

所以反比例函数的解析式为,············································································· 4分

(2)当为一、三象限角平分线与反比例函数图像的交点时,

线段最短.············································································································ 5分

代入,解得,即.····················· 6分

,··········································································································· 7分

,··········································································································· 8分

为反比例函数图像上的任意两点,

由图象特点知,线段无最大值,即.·················································· 9分

试题详情

8.解:(1)∵反比例函数的图像经过点A(1,3),

       ∴,即m=-3.

       ∴反比例函数得表达式为.             ……3分

       ∵一次函数y=kx+b的图像经过A(1,-3)、C(0,-4),

       ∴  解得

       ∴一次函数的表达式为y=x-4               ……3分

(2)由消去y,得x2-4x+3=0.

   即(x-1)(x-3)=0.

   ∴x=1或x=3.

   可得y=-3或y=-1.

于是

而点A的坐标是(1,-3),

∴点B的坐标为(3,-1)。                     ……2分

试题详情

7. 解:(1)设药物燃烧阶段函数解析式为,由题意得:

························································································································ 2分

此阶段函数解析式为······································································· 3分

(2)设药物燃烧结束后的函数解析式为,由题意得:

·························································································································· 5分

此阶段函数解析式为······································································ 6分

(3)当时,得···················································································· 7分

························································································································· 8分

·························································································································· 9分

从消毒开始经过50分钟后学生才可回教室.···························································· 10分

试题详情

6. 解 (Ⅰ)∵点P(2,2)在反比例函数的图象上,

.即. ···································································································· 2分

∴反比例函数的解析式为

∴当时,. ···························································································· 4分

(Ⅱ)∵当时,;当时,,  ····················································· 6分

又反比例函数值随值的增大而减小, ············································· 7分

∴当时,的取值范围为.································································ 8分

试题详情

5. (1)证明:分别过点C、D作

垂足为G、H,则

(2)①证明:连结MF,NE

设点M的坐标为,点N的坐标为

∵点M,N在反比例函数的图象上,

由(1)中的结论可知:MN∥EF。

②MN∥EF。

试题详情

4. 解:(1)由题意可知,

解,得 m=3.     ………………………………3分

A(3,4),B(6,2);

k=4×3=12.   ……………………………4分

(2)存在两种情况,如图: 

①当M点在x轴的正半轴上,N点在y轴的正半轴

上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).

∵ 四边形AN1M1B为平行四边形,

∴ 线段N1M1可看作由线段AB向左平移3个单位,

再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).

由(1)知A点坐标为(3,4),B点坐标为(6,2),

N1点坐标为(0,4-2),即N1(0,2);    ………………………………5分

M1点坐标为(6-3,0),即M1(3,0).    ………………………………6分

设直线M1N1的函数表达式为,把x=3,y=0代入,解得

∴ 直线M1N1的函数表达式为. ……………………………………8分

②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2). 

ABN1M1ABM2N2ABN1M1ABM2N2

N1M1M2N2N1M1M2N2.  

∴ 线段M2N2与线段N1M1关于原点O成中心对称.   

M2点坐标为(-3,0),N2点坐标为(0,-2).   ………………………9分

设直线M2N2的函数表达式为,把x=-3,y=0代入,解得

∴ 直线M2N2的函数表达式为.   

所以,直线MN的函数表达式为.  ………………11分

(3)选做题:(9,2),(4,5).  ………………………………………………2分

试题详情

3. 解:(1) ………(每个点坐标写对各得2分)………………………4分

(2) ∵    ∴…1分

  ∴ …………………1分

      ∴ …………………2分

 (3)  ①

∴相应B点的坐标是 …………………………………………1分

∴. ………………………………………………………………1分

 ②  能  ……………………………………………………………………1分

   当时,相应,点的坐标分别是

经经验:它们都在的图象上

 …………………………………………………………………1分

试题详情

2. 解:(1)(-4,-2);(-m,-)

(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形

②可能是矩形,mn=k即可

不可能是正方形,因为Op不能与OA垂直。

解:(1)作BE⊥OA,

∴ΔAOB是等边三角形

∴BE=OB·sin60o=

∴B(,2)

∵A(0,4),设AB的解析式为,所以,解得,的以直线AB的解析式为

(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,PD=PA=

试题详情

1. 证明:(1)分别过点CD,作CGABDHAB

垂足为GH,则∠CGA=∠DHB=90°.……1分

CGDH.  

∵ △ABC与△ABD的面积相等, 

CGDH.   …………………………2分

∴ 四边形CGHD为平行四边形. 

ABCD.  ……………………………3分

(2)①证明:连结MFNE.  …………………4分

设点M的坐标为(x1y1),点N的坐标为(x2y2).

∵ 点MN在反比例函数(k>0)的图象上,

. 

MEy轴,NFx轴, 

OEy1OFx2

SEFM,   ………………5分

SEFN.   ………………6分

SEFM SEFN       ……

由(1)中的结论可知:MNEF.  ………8分

MNEF.      …………………10分

(若学生使用其他方法,只要解法正确,皆给分.

试题详情


同步练习册答案