0  441049  441057  441063  441067  441073  441075  441079  441085  441087  441093  441099  441103  441105  441109  441115  441117  441123  441127  441129  441133  441135  441139  441141  441143  441144  441145  441147  441148  441149  441151  441153  441157  441159  441163  441165  441169  441175  441177  441183  441187  441189  441193  441199  441205  441207  441213  441217  441219  441225  441229  441235  441243  447090 

2.不放回抽样和放回抽样:

在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

随机抽样、系统抽样、分层抽样都是不放回抽样

试题详情

1.分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层

试题详情

9.①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;

②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.

③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样

试题详情

8.系统抽样的步骤:

①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等

②为将整个的编号分段(即分成几个部分),要确定分段的间隔k(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.

③在第一段用简单随机抽样确定起始的个体编号

④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本)

试题详情

7.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.

试题详情

6.简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

试题详情

5.随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码

试题详情

4.抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本

适用范围:总体的个体数不多时

优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.

试题详情

3.⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为

   ⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

   ⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

试题详情

2.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样

试题详情


同步练习册答案