0  441587  441595  441601  441605  441611  441613  441617  441623  441625  441631  441637  441641  441643  441647  441653  441655  441661  441665  441667  441671  441673  441677  441679  441681  441682  441683  441685  441686  441687  441689  441691  441695  441697  441701  441703  441707  441713  441715  441721  441725  441727  441731  441737  441743  441745  441751  441755  441757  441763  441767  441773  441781  447090 

7. She always thinks of____ more than herself.

A. other  B. others  C. the other  D. the others

试题详情

6. - ___is it from here?  -Only half an hour’s ride.

A. How far  B. How long  C. How soon  D. Flow much

试题详情

5. - Shall we go on a picnic?   -That’s going to be ______

A.    fun  B. funny  C. fun  D. very fun

试题详情

4. Jim and Bill don’t live _____ the middle school.

A. away from  B. far from  C. far away  D. far

试题详情

3. They have decided to go to work _____every day.

A. by bikes  B. on feet  C. by bus  D. in car

试题详情

2. Jack began to do his homework as soon as he____ home.

A. came to  B. reached  C. arrived at  D. got to

试题详情

1. The bus station is about five hundred meters____ here,it’s within walking distance.

A. away from  B. away  C. far away from  D. far from

试题详情

12.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.

(1)试判断函数y=f(x)的奇偶性; 

(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.

解 (1)由

 从而知函数y=f(x)的周期为T=10.又f(3)=f(1)=0,而f(7)≠0,故f(-3)≠0. 

故函数y=f(x)是非奇非偶函数. 

(2)由(1)知y=f(x)的周期为10. 

又f(3)=f(1)=0,f(11)=f(13)=f(-7)=f(-9)=0, 

故f(x)在[0,10]和[-10,0]上均有两个解,从而可知函数y=f(x)在[0,2 005]上有402个解,在[-2 005,0]上有400个解,所以函数y=f(x)在[-2 005,2 005]上有802个解.

试题详情

11.已知函数f(x)=x2+|x-a|+1,a∈R. 

(1)试判断f(x)的奇偶性; 

(2)若-≤a≤,求f(x)的最小值.

解  (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x), 

此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1, 

f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数. 

(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+, 

∵a≤,故函数f(x)在(-∞,a]上单调递减, 

从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1. 

当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+, 

∵a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1. 

综上得,当-≤a≤时,函数f(x)的最小值为a2+1. 

试题详情

10.已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 

解  ∵f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0. 

当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x), 

即f(x)=-xlg(2+x) (x>0).∴f(x)=

即f(x)=-xlg(2+|x|) (x∈R).

试题详情


同步练习册答案