6.如图所示,S1、S2是两个相干波源,它们振动同步且振幅相同。实线和虚线分别表示在某一时刻它们所发出的波的波峰和波谷。关于图中所标的a、b、c、d四点,下列说法中正确的有( )
A.该时刻a质点振动最弱,b、c质点振动最强,d质点振
动既不是最强也不是最弱
B.该时刻a质点振动最弱,b、c、d质点振动都最强
C.a质点的振动始终是最弱的, b、c、d质点的振动始终是最强的
D.再过T/4后的时刻a、b、c三个质点都将处于各自的平衡位置,因此振动最弱
5.关于电磁波和电磁场,下列叙述中正确的是( )
A.均匀变化的电场在它的周围空间产生均匀变化的磁场
B.电磁波中每一处的电场强度和磁感应强度总是互相垂直的,且与波的传播方向垂直
C.电磁波和机械波一样依赖于介质传播
D.只要空间某个区域有振荡的电场或磁场,就能产生电磁波
4.A、B两列波在某时刻的波形如图所示,经过t=TA时间(TA为波A的周期),两波再次出现如图波形,则两波的波速之比vA:vB可能是( )
A.1:3 B.1:2
C.2:1 D.3:1
3.图示表示一列简谐波沿x轴正方向传播在t=0时的波形图,已知这列波在P点依次出现2个波峰的时间间隔为0.4s,则下列说法中正确的是:( )
A.这列波的波长是5m
B.这列波的波速是10m/s
C.质点Q要再经过0.7s才能第一次到达波峰处
D.质点Q到达波峰时,质点P也恰好达到波峰处
2.一个质点做简谐运动,它的振动图象如图,则( )
A.图中的曲线部分是质点的运动轨迹
B.有向线段OA是质点在时间内的位移
C.有向线段OA在轴的投影是质点在时间内的位移
D.有向线段OA的斜率是质点在时刻的瞬时速率
1.一个在水平方向做简谐运动的弹簧振子的振动周期是0.4s,当振子从平衡位置开始向右运动,在0.05s时刻,振子的运动情况是( )
A.正在向左做减速运动 B.正在向右做加速运动
C.加速度正在减小 D.动能正在减小
20.已知函数
上恒成立
(1)求的值;
(2)若
(3)是否存在实数m,使函数上有最小值-5?若
存在,请求出实数m的值;若不存在,请说明理由.
解:(1)
恒成立
即恒成立
显然时,上式不能恒成立
是二次函数
由于对一切于是由二次函数的性质可得
即
.
(2)
即
当,当.
(3)
该函数图象开口向上,且对称轴为
假设存在实数m使函数区间 上有
最小值-5.
①当上是递增的.
解得舍去
②当上是递减的,而在
区间上是递增的,
即
解得
③当时,上递减的
即
解得应舍去.
综上可得,当时,
函数
19.数列{an}满足,前n项和,
(1)写出
(2)猜出,并用数学归纳法证明。
解:(1)由得:
由得:
由得:
(2)猜想:
证明:①当n=1时,,,等式成立。
②假设当n=k时等式成立,则,当n=k+1时,
,综合①②,等式成立。
17.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记.
(1)分别求出取得最大值和最小值时的概率;
(2)求的分布列及数学期望.
解:(1)掷出点数可能是:
则分别得:于是的所有取值分别为:
因此的所有取值为:0,1,2,4,5,8.
当且时,可取得最大值,
此时,;
当且时,可取得最小值.
此时,.
(2)由(Ⅰ)知的所有取值为:0,1,2,4,5,8.
;
当=1时,的所有取值为(2,3)、(4,3)、(3,2)、(3,4).即;
当=2时,的所有取值为(2,2)、(4,4)、(4,2)、(2,4).
即;
当=4时,的所有取值为(1,3)、(3,1).即;
当=5时,的所有取值为(2,1)、(1,4)、(1,2)、(4,1).即.
所以ξ的分布列为:
ξ |
0 |
1 |
2 |
4 |
5 |
8 |
P |
|
|
|
|
|
|
18 已知函数.
(Ⅰ)若函数在处取得极值,且曲线在点,处的切线与直线平行,求的值;
(Ⅱ)若,试讨论函数的单调性.
解:(Ⅰ)函数的定义域为.
由题意 ,解得
.
(Ⅱ)若, 则.
.
(1)令,由函数定义域可知,,所以
①当时,,,函数单调递增;
②当时,,,函数单调递增;
(2)令,即
①当时,不等式无解;
②当时,,,函数单调递减;
综上:当时,函数在区间为增函数;
当时,函数在区间为增函数;
在区间为减函数.
16. 在三棱锥中,和是边长为的等边三角形,,是中点.
(Ⅰ)在棱上求一点,使得∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求二面角的余弦值.
解 (Ⅰ)当为棱中点时,∥平面.
证明如下:
分别为中点,
∥
又平面,平面
∥平面.
(Ⅱ)连结,
,为中点,,
⊥,.
同理, ⊥,.
又,
,
.
⊥.
⊥,⊥,,
⊥平面.
平面
平面⊥平面.
(Ⅲ)如图,建立空间直角坐标系.
则,,,
, .
由(Ⅱ)知是平面
的一个法向量.
设平面的法向量为,
则 .
令,则,
平面的一个法向量.
.
二面角的平面角为锐角,
所求二面角的余弦值为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com