0  446494  446502  446508  446512  446518  446520  446524  446530  446532  446538  446544  446548  446550  446554  446560  446562  446568  446572  446574  446578  446580  446584  446586  446588  446589  446590  446592  446593  446594  446596  446598  446602  446604  446608  446610  446614  446620  446622  446628  446632  446634  446638  446644  446650  446652  446658  446662  446664  446670  446674  446680  446688  447090 

562. 斜四棱柱侧面最多可有几个面是矩形

A、                                                                  0个      B、1个      C、2个      D、3个

解析:C。 只能相对的侧面均为矩形

试题详情

561. 四面体的四个顶点到平面M的距离之比为1∶1∶1∶3,则平面M的个数应有多少个?

解  这样的平面应分4种情况讨论:

(1)4个顶点都在平面M的同侧,则有C41·1=4个(平面);

(2)距离比为3的顶点与其他3个顶点不同侧,则有C41·1=4个(平面);

(3)距离比为3的顶点与其他3个顶点中的1个同侧,则有C31·C41·1=12个(平面)

(4)距离比为3的顶点与其他3个顶点中的2个同侧,则有C32·C41·1=12个(平面);

∴  一共应有4+4+12+12=32个(平面)

试题详情

560. 在ΔABC中,M、N分别是AB、AC上的点,.沿MN把ΔAMN到ΔA′MN的位置,二面角A′-MN-B为60°,求证:平面A′MN⊥平面A′BC.

解析:作AD⊥BC于D,设AD∩MN=P,∠A′PD=60°,可证A′P⊥平面A′BC.

试题详情

559.  正方体ABCD-A1B1C1D1的棱长为a,求A1C1和平面AB1C间的距离.

解法1  如图所示,A1C1∥平面AB1C,又平面BB1DD1⊥平面AB1C.

故若过O1作O1E⊥OB1于E,则OE1⊥平面AB1C,O1E为所求的距离

由O1E·OB1=O1B1·OO1

可得:O1E=

解法2:转化为求C1到平面AB1C的距离,也就是求三棱锥C1-AB1C的高h.

由  V=V,可得h=a.

解法3  因平面AB1C∥平面C1DA1,它们间的距离即为所求,连BD1,分别交B1O、DO1与F、G(图中未画出)。易证BD1垂直于上述两个平面,故FG长即为所求,易求得

FG=.

点评  (1)求线面距离的先决条件是线面平行,而求线面距离的常用方法是把它们转化为求点面之间的距离,有时也可转化为求面面距离,从本题的解法也可悟出求异面直线之间的距离的思路.

试题详情

558.  如图,在棱长为a的正方体AC1中,M是CC1的中点,点E在AD上,且AE=AD,F在AB上,且AF=AB,求点B到平面MEF的距离.

解法一:设AC与BD交于O点,EF与AC交于R点,由于EF∥BD所以将B点到面MEF的距离转化为O点到面MEF的距离,面MRC⊥面MEF,而MR是交线,所以作OH⊥MR,即OH⊥面MEF,OH即为所求.

∵OH·MR=OR·MC,

∴OH=.

解法二:考察三棱锥B-MEF,由VB-MEF=VM-BEF可得h.

点评  求点面的距离一般有三种方法:

①利用垂直面;

②转化为线面距离再用垂直面;

③当垂足位置不易确定时,可考虑利用体积法求距离.

试题详情

557.  在空间四边形ABCP中,PA⊥PC,PB⊥BC,AC⊥BC.PA、PB与平面ABC所成角分别为30°和45°。(1)直线PC与AB能否垂直?证明你的结论;(2)若点P到平面ABC的距离为h,求点P到直线AB的距离.

解析:主要考查直线与直线、直线与平面的位置关系的综合应用及线面角,点面间距离等概念应用,空间想象力及推理能力.

解  (1)AB与PC不能垂直,证明如下:假设PC⊥AB,作PH⊥平面ABC于H,则HC是PC在平面ABC的射影,∴HC⊥AB,∵PA、PB在平面ABC的射影分别为HB、HA,PB⊥BC,PA⊥PC.

∴BH⊥BC,AH⊥AC

∵AC⊥BC,∴平行四边形ACBH为矩形.

∵HC⊥AB,∴ACBH为正方形.

∴HB=HA

∵PH⊥平面ACBH.∴ΔPHB≌ΔPHA.

∴∠PBH=∠PAH,且PB,PA与平面ABC所成角分别为∠PBH,∠PAH.由已知∠PBH=45°,∠PAH=30°,与∠PBH=∠PAH矛盾.

∴PC不垂直于AB.

(2)由已知有PH=h,∴∠PBH=45°

∴BH=PH=h.∵∠PAH=30°,∴HA=h.

∴矩形ACBH中,AB==2h.

作HE⊥AB于E,∴HE=h.

∵PH⊥平面ACBH,HE⊥AB,

由三垂线定理有PE⊥AB,∴PE是点P到AB的距离.

在RtΔPHE中,PE=h.

即点P到AB距离为h.

评析:此题属开放型命题,处理此类问题的方法是先假设结论成立,然后“执果索因”,作推理分析,导出矛盾的就否定结论(反证法),导不出矛盾的,就说明与条件相容,可采用演绎法进行推理,此题(1)属于反证法.

试题详情

556. 空间四边形PABC中,PA、PB、PC两两相互垂直,∠PBA=45°,∠PBC=60°,M为AB的中点.(1)求BC与平面PAB所成的角;(2)求证:AB⊥平面PMC.

解析:此题数据特殊,先考虑数据关系及计算、发现解题思路.

解  ∵  PA⊥AB,∴∠APB=90°

在RtΔAPB中,∵∠ABP=45°,设PA=a,

则PB=a,AB=a,∵PB⊥PC,在RtΔPBC中,

∵∠PBC=60°,PB=a.∴BC=2a,PC=a.

∵AP⊥PC  ∴在RtΔAPC中,AC==2a

(1)∵PC⊥PA,PC⊥PB,∴PC⊥平面PAB,

∴BC在平面PBC上的射影是BP.

∠CBP是CB与平面PAB所成的角

∵∠PBC=60°,∴BC与平面PBA的角为60°.

(2)由上知,PA=PB=a,AC=BC=2a.

∴M为AB的中点,则AB⊥PM,AB⊥CM.

∴AB⊥平面PCM.

说明  要清楚线面的垂直关系,线面角的定义,通过数据特点,发现解题捷径.

试题详情

555.  矩形ABCD,AB=2,AD=3,沿BD把ΔBCD折起,使C点在平面ABD上的射影恰好落在AD上.

(1)求证:CD⊥AB;  (2)求CD与平面ABD所成角的余弦值.

(1)证明  如图所示,∵CM⊥面ABD,AD⊥AB,

∴CD⊥AB

(2)解:∵CM⊥面ABD

∴∠CDM为CD与平面ABD所成的角,

cos∠CDM=

作CN⊥BD于N,连接MN,则MN⊥BD.在折叠前的矩形ABCD图上可得

DM∶CD=CD∶CA=AB∶AD=2∶3.

∴CD与平面ABD所成角的余弦值为

试题详情

554.  如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1,M是CC1的中点,求证:AB1⊥A1M.

解析:不难看出B1C1⊥平面AA1C1C,AC1是AB1在平面AA1C1C上的射影.欲证A1M⊥AB1,只要能证A1M⊥AC1就可以了.

证:连AC1,在直角ΔABC中,BC=1,∠BAC=30°,∴  AC=A1C1.

设∠AC1A1=α,∠MA1C1=β∴  tanα=,

tgβ=.∵cot(α+β)==0,

∴α+β=90°  即AC1⊥A1M.   ∵B1C1⊥C1A1,CC1⊥B1C1,∴B1C1⊥平面AA1CC1

AC1是AB1在平面AA1C1C上的射影.  ∵AC1⊥A1M,∴由三垂线定理得A1M⊥AB1.

评注:本题在证AC1⊥A1M时,主要是利用三角函数,证α+β=90°,与常见的其他题目不太相同.

试题详情

553. 求证:端点分别在两条异面直线a和b上的动线段AB的中点共面.

证明  如图,设异面直线a、b的公垂线段是PQ,PQ的中点是M,过M作平面α,使PQ⊥平面α,且和AB交于R,连结AQ,交平面α于N.连结MN、NR.∵PQ⊥平面α,MNα,∴PQ⊥MN.在平面APQ内,PQ⊥a,PQ⊥MN,∴MN∥a,a∥α,又∵PM=MQ,∴AN=NQ,同理可证NR∥b,RA=RB.

即动线段的中点在经过中垂线段中点且和中垂线垂直的平面内.

试题详情


同步练习册答案