【题目】如图,反比例函数的图像与一次函数的图像交于两点,.
(1)求反比例函数与一次函数的函数表达式;
(2)在反比例函数的图像上找点,使得点构成以为底的等腰三角形,请求出所有满足条件的点的坐标.
【答案】(1),y=x+2;(2)(3,1)或(-3,-1)
【解析】
(1)把点A的坐标代入反比例解析式中求出k的值,确定出反比例的解析式,然后把B的坐标代入反比例解析式中求出n的值确定出点B的坐标,把A和B的坐标代入一次函数解析式中得到关于m和b的二元一次方程组,求出方程组的解得到m与b的值,确定出一次函数的解析式;
(2)由题意可知,找出点A关于y=x的对称点P1,且找出P关于原点的对称点P2,点构成以为底的等腰三角形,根据对称的特点写出P1和P2的坐标即可.
(1)把点A(1,3)代入反比例解析式中得:k=1×3=3,
∴反比例解析式为,
又把点B(n,1)代入反比例解析式中得:n=3,
即点B(3,1),A(1,3),又一次函数y=mx+b,
∴将A和B代入一次函数得:,解得,
∴一次函数解析式为y=x+2;
(2)如图,∵△AP1O是以AP1为底的等腰三角形,根据反比例函数的对称性可知A、P1关于y=x对称
∴P1(3,1)
由图可知,P1关于原点的对称点P2也满足△AP2O是以AP2为底的等腰三角形,
则P2(3,1).
故P的坐标为(3,1)或(3,-1).
科目:初中数学 来源: 题型:
【题目】观察下列等式:
第一个等式:;
第二个等式:;
第三个等式:;
第四个等式:;
按上述规律,回答下列问题:
(1)请写出第六个等式:a6= = ;
(2)用含n的代数式表示第n个等式:an= = ;
(3)a1+a2+a3+a4+a5+a6= (得出最简结果);
(4)计算:a1+a2+…+an.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB中,∠AOB=90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为测量某条河的宽度BC,工程队用无人机在距地面高度为200米的A处测得B,C两点的俯角分别为30°和45°,且点B,C,D在同一水平直线上,求A,C之间的距离和这条河的宽度BC.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为缓解交通压力,建设美丽遵义,市政府加快了风新快线的建设.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=8千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地大约要走多少千米?
(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学准备开展“阳光体育活动”,决定开设篮球、足球、乒乓球和羽毛球四种项目的活动,为了了解学生对这四项活动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择这四项活动中的一种),并将调查结果绘制成如下的不完整的统计图:学生最喜欢的活动项目的人数条形统计图学生最喜欢的活动项目的人数扇形统计图
根据以上统计图提供的信息,解答下列问题:
(1)a=_____,b=______,c=______;
(2)请根据以上信息直接在答题卡中补全条形统计图;
(3)根据抽样调查结果,请你估计该校1000名学生中有多少名学生最喜爱打篮球.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB,CD的延长线分别交于点E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么条件时,四边形AECF是菱形?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com