【题目】某大学毕业生响应国家“自主创业”的号召,投资开办了一个装怖品商店,该店采购了一种今年新上市的装饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件),销售价格Q(元/件)与销售时间x(天) (1≤x≤30,且x为正整数)都满足一次函数关系,其函数图象如图所示:
(1)请直接写出:销售量(P件)与销售时间x(天)之间的函数关系式,销售价格Q(元/件)与销售时间x(天)之间的函数关系式;
(2)请问在30天的试销售中,哪﹣天的日销售利润最大?求最大利润.
【答案】(1)P=﹣2x+80;Q=x+30;(2)在30天的试销售中,第10天的日销售利润最大,最大利润为900元.
【解析】
(1)根据图象利用待定系数法确定一次函数的解析式即可;
(2)根据题意列出有关销售利润的函数关系式求得最值即可.
(1)设p=ax+b,q=cx+d,
根图象知:
,
解得:,,
∴P=﹣2x+80;Q=x+30,
故答案为:P=﹣2x+80;Q=x+30;
(2)设30天的试销售中,每天的销售利润为W元,则
W=P(Q﹣20)=(﹣2x+80)[(x+30)﹣20]
=﹣x2+20x+800
∵W=﹣(x﹣10)2+900.
所以当x=10时,W有最大值,W的最大值为900.
所以在30天的试销售中,第10天的日销售利润最大,最大利润为900元.
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC内接于⊙O,点D在OC的延长线上,sin B=,∠D=30°.
(1)求证AD是⊙O的切线;
(2)若AC=6,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.
(1)求抛物线的解析式;
(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;
(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的 速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t= 时,PQ∥AB
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),与y轴交点为(0,3),其部分图象如图所示,则下列结论错误的是( )
A. b﹣4ac≥0
B. 关于x的方程ax+bx+c﹣3=0有两个不相等的实数根
C. a﹣b+c=0
D. 当y>0时,﹣1<x<3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB, PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:
(一)(新知学习):圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).
(二)(问题解决):已知⊙O的直径为4,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,点P为上一动点(不与B、C重合)(如图一).
① 证明:四边形PMON内接于某圆;②证明MN的长为定值,并求其定值;
(2)若直径AB与CD相交成120°角.
① 当点P运动到的中点时(如图二),求MN的长;
② 当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.
(3)试问当直径AB与CD相交角∠BOC=______度时,MN的长取最大值,其最大值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com