精英家教网 > 初中数学 > 题目详情
12.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究一:如图1,在△ABC中,已知O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+
$\frac{1}{2}$∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线
∴∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACB
∴∠1+∠2=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-∠A)=90°-$\frac{1}{2}$∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-$\frac{1}{2}$∠A)=90°+$\frac{1}{2}$∠A
(1)探究2:如图2中,已知O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?并说明理由.
(2)探究3:如图3,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)结论:∠BOC=90°-$\frac{1}{2}$∠A.
(3)拓展:在四边形ABCD中,已知O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)结论:∠BOC=$\frac{1}{2}$(∠A+∠D).

分析 (1)根据角平分线的定义可得∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义可得∠2=$\frac{1}{2}$∠ACD=$\frac{1}{2}$(∠A+∠ABC),∠BOC=∠2-∠1,然后整理即可得解;
(2)根据三角形的外角性质以及角平分线的定义表示出∠OBC和∠OCB,再根据三角形的内角和定理解答;
(3)同(1)的求解思路;

解答 解:(1)探究2结论:∠BOC=$\frac{1}{2}$∠A.
理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,
∴∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACD,
又∵∠ACD是△ABC的一个外角,
∴∠2=$\frac{1}{2}$∠ACD=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+∠1,
∵∠2是△BOC的一个外角,
∴∠BOC=∠2-∠1=$\frac{1}{2}$∠A+∠1-∠1=$\frac{1}{2}$∠A,
即∠BOC=$\frac{1}{2}$∠A;

(2)由三角形的外角性质和角平分线的定义,∠OBC=$\frac{1}{2}$(∠A+∠ACB),∠OCB=$\frac{1}{2}$(∠A+∠ABC),
在△BOC中,∠BOC=180°-∠OBC-∠OCB=180°-$\frac{1}{2}$(∠A+∠ACB)-$\frac{1}{2}$(∠A+∠ABC),
=180°-$\frac{1}{2}$(∠A+∠ACB+∠A+∠ABC),
=180°-$\frac{1}{2}$(180°+∠A),
=90°-$\frac{1}{2}$∠A;

(3)∠OBC+∠OCB=$\frac{1}{2}$(360°-∠A-∠D),
在△BOC中,∠BOC=180°-$\frac{1}{2}$(360°-∠A-∠B)=$\frac{1}{2}$(∠A+∠D).

点评 本题考查了三角形的外角性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图,整体思想的利用是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.在四边形ABCD中,AC=AB,DC=CB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.

(1)求证:DE=DF;
(2)在图1中,若G在AB上且∠EDG=60°,试猜想CE、EG、BG之间的数量关系并证明所归纳结论;
(3)若题中条件“∠CAB=60°且∠CDB=120°”改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).
(4)运用(1)(2)(3)解答中所积累的经验和知识,完成下题:如图2,在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图①,∠DBC、∠BCE为△ABC的两个外角,则∠A与∠DBC+∠BCE的数量关系∠A=∠DBC+∠BCE-180°,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=55°,∠BDC=95°,求△BDE各内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,已知FD∥BE,则∠1+∠2-∠3的值为(  )
A.90°B.135°C.150°D.180°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.将若干本书放入若干个抽屉中,若每个抽屉放4本书,则有3本书无抽屉可放;若每个抽屉放5本书,则只有一个抽屉无书可放,其它抽屉正好放满,则这批书有35本.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据SAS,易证△AFG≌△AFE,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知:△ABC中,AB=4,AC=3,BC=$\sqrt{7}$,则△ABC的面积是$\frac{3}{2}$$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.若抛物线的顶点为点D(-1,4),点E(-2,n)在抛物线上,x轴,y轴上是否存在点P,Q,使四边形PQDE的周长最小?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案