【题目】如图,⊙O的直径AB=12,AM,BN是⊙O的两条切线,DC切⊙O于E,交BN于C,设AD=x,BC=y.
(1)求y与x的函数关系式;
(2)若x,y是2t2-30t+m=0的两实根,求x,y的值;
(3)求△OCD的面积.
【答案】(1);(2;(3)45.
【解析】
(1)根据切线长定理得到BF=AD=x,CE=CB=y,则DC=DE+CE=x+y,在直角△DFC中根据勾股定理,就可以求出y与x的关系,
(2)由(1)求得xy=36;最后由根与系数的关系求得a的值,通过解一元二次方程即可求得x、y的值;
(3)由AM,BN是⊙O的两条切线,DC切⊙O于E,得到OE⊥CD,AD=DE,BC=CE,推出S△AOD=S△ODE,S△OBC=S△COE,S△COD=××(3+12)×12=45.
(1)如图1,作DF⊥BN交BC于F;
∵AM、BN与⊙O切于点定A、B,
∴AB⊥AM,AB⊥BN.
又∵DF⊥BN,
∴∠BAD=∠ABC=∠BFD=90°,
∴四边形ABFD是矩形,
∴BF=AD=x,DF=AB=12,
∵BC=y,
∴FC=BC-BF=y-x;
∵DE切⊙O于E,
∴DE=DA=x CE=CB=y,
则DC=DE+CE=x+y,
在Rt△DFC中,
由勾股定理得:(x+y)2=(y-x)2+122,
整理为:y=,
∴y与x的函数关系式是y=.
(2)由(1)知xy=36,
x,y是方程2x2-30x+a=0的两个根,
∴根据韦达定理知,xy=,即a=72;
∴原方程为x2-15x+36=0,解得,
或,
∵x<y,
∴;
(3)如图2,连接OD,OE,OC,
∵AD,BC,CD是⊙O的切线,
∴OE⊥CD,AD=DE,BC=CE,
∴S△AOD=S△ODE,
S△OBC=S△COE,
∴S△COD=××(3+12)×12=45.
科目:初中数学 来源: 题型:
【题目】直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F.
(1)如果∠AFE=65°,求∠CDF的度数;
(2)若折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌相机,原售价每台4000元,经连续两次降价后,现售价每台3240元,已知两次降价的百分率一样。
(1)求每次降价的百分率;
(2)如果按这个百分率再降价一次,求第三次降价后的售价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,求BF的长(计算结果可含根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若每件商品降价2元,则平均每天可售出______件;
(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已 知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.
(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=20,AB=32,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点F落在矩形ABCD的对称轴上时,则DE的长为_____
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com