【题目】综合与探究
(1)操作发现:如图1,点D是等边△ABC边BA上一动点(点D与点B不重合),连结DC,以DC为边在CD上方作等边△DCF,连结AF,你能发现线段AF与BD之间的数量关系吗?证明你发现的结论.
(2)类比猜想:如图2,当动点D运动至等边△ABC边BA的延长线上时,其余条件不变,猜想:(1)中的结论是否成立,并说明理由.
(3)拓展探究:如图3.当动点D在等边△ABC边BA上运动时(点D与点B不重合),连结DC,以DC为边在CD上方和下方分别作等边△DCF和等边△DCF′,连结AF,BF′,探究:AF、BF′与AB有何数量关系?并说明理由.
【答案】(1)AF=BD,证明见解析;(2)AF=BD,理由见解析;(3)AF+BF′=AB,理由见解析.
【解析】
(1)如图①中中,结论:AF=BD.证明△BCD≌△ACF(SAS)可得结论.
(2)如图②中,结论:AF=BD.证明△BCD≌△ACF(SAS)可得结论.
(3)如图③中.结论:AF+BF′=AB.利用全等三角形的性质解决问题即可.
解:(1)如图①中中,结论:AF=BD.
理由:∵△ABC,△DCF都是等边三角形,
∴CB=CA,CD=CF,∠BCA=∠DCF=60°,
∴∠BCD=∠ACF,
∴△BCD≌△ACF(SAS),
∴BD=CF.
(2)如图②中,结论:AF=BD.
理由:∵△ABC,△DCF都是等边三角形,
∴CB=CA,CD=CF,∠BCA=∠DCF=60°,
∴∠BCD=∠ACF,
∴△BCD≌△ACF(SAS),
∴BD=CF.
(3)如图③中.结论:AF+BF′=AB.
理由:∵△ABC,△DCF都是等边三角形,
∴CB=CA,CD=CF,∠BCA=∠DCF=60°,
∴∠BCD=∠ACF,
∴△BCD≌△ACF(SAS),
∴BD=CF.
同法可证:△ACD≌△BCF′(SAS),
∴AD=BF′,
∴AF+BF′=BD+AD=AB.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E,⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=10,BG=13,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h) 与A地的距离 | 0.5 | 1.8 | _____ |
甲与A地的距离(km) | 5 |
| 20 |
乙与A地的距离(km) | 0 | 12 |
|
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC关于原点对称的△A1B1C1;
(2)四边形CBC1B1为 四边形;
(3)点P为平面内一点,若以点A、B、C、P为顶点的四边形为平行四边形,请直接写出所有满足条件的点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OBCD中的三个顶点在⊙O上,点A是优弧BD上的一个动点(不与点B、D重合).
(1)当圆心O在∠BAD内部,∠ABO+∠ADO=50°时,∠A = °;
(2)当圆心O在∠BAD内部,四边形OBCD为平行四边形时,求∠C的度数;
(3)当圆心O在∠BAD外部,四边形OBCD为平行四边形时,请直接写出∠ABO与∠ADO的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是小慧在“天猫双11”活动中购买的一张多档位可调节靠椅.档位调节示意图如图2所示,己知两支脚分米,分米,为上固定连接点,靠背分米.档位为Ⅰ档时,,档位为Ⅱ档时,.当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端向后靠的水平距离(即)为______分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
(1)二月份冰箱每台售价为多少元?
(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BC,射线CM⊥BC,且BC=4,AB=1,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.
(1)如图1,若BP=3,求△ABP的周长;
(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;
(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=_____.(请直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com