【题目】将一个直角三角形纸片,放置在平面直角坐标系中,点,点,点
(I)过边上的动点 (点不与点,重合)作交于点,沿着折叠该纸片,点落在射线上的点处.
①如图,当为中点时,求点的坐标;
②连接,当为直角三角形时,求点坐标:
(Ⅱ)是边上的动点(点不与点重合),将沿所在的直线折叠,得到,连接,当取得最小值时,求点坐标(直接写出结果即可).
【答案】(I)①;②点坐标为或;(II)
【解析】
(I)①过点E做EH⊥OA ,交OA于点H,由D为OB中点结合DE∥OA,可得出DE为△BOA的中位线,再根据点A、B的坐标即可得出点E的坐标;
②根据折叠的性质结合角的计算可得出∠AEF=60°≠90°,分∠AFE=90°和∠EAF=90°两种情况考虑,利用含30度角的直角三角形以及勾股定理即可求出点E的坐标;
(II)根据三角形的三边关系,找出当点A′在y轴上时,BA′取最小值,根据折叠的性质可得出直线OP的解析式,再根据点A、B的坐标利用待定系数法求出直线AB的解析式,联立两直线解析式成方程组,解之即可得出点P的坐标.
(I)过点E做EH⊥OA ,交OA于点H,
①∵, ,
∴.
∵为中点,
∴D点的坐标为,
∴为的中位线,
∴点为线段的中点,
又∵,
∴EH为的中位线,
∴点H为线段OA的中点,
∴点H的坐标为,
∴点的坐标为.
②∵点,点,
∴,OB=3
∴,
∴∠B=30°,
由折叠可知:.
∴,
∴.
∵是直角三角形,
∴或
(i)当时,如图1所示
.
在中,,
∴,,
∵,
∴,.
在中, ,.
∴,
∵,
∴,.
∵.
∴点的坐标为;
(ii)当时,如图2所示.
∵,
∴,
∴.
在中, ,,
∴,
∵,
∴,.
在中, , ,
∴,
∵,
∴,
∵,
∴点的坐标为.
综上所述:当为直角三角形时,点坐标为或.
(II)由折叠可知:,
∴,,
又∵,
∴当点在轴上时,取最小值,如图3所示.
∵
∴
∴直线的解析式为
设直线的解析式为,
将、代入中,
,解得:,
∴直线的解忻式为.
联立直线、的解析式成方程组,
,解得:,
∴.当取得最小值时,点坐标为.
科目:初中数学 来源: 题型:
【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个直角三角形纸片,放置在平面直角坐标系中,点,点,点
(I)过边上的动点 (点不与点,重合)作交于点,沿着折叠该纸片,点落在射线上的点处.
①如图,当为中点时,求点的坐标;
②连接,当为直角三角形时,求点坐标:
(Ⅱ)是边上的动点(点不与点重合),将沿所在的直线折叠,得到,连接,当取得最小值时,求点坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课外阅读是提高学生素养的重要途径.某校为了解本校学生课外阅读情况,对九年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请根据图中提供的信息,解答下面的问题:
(1)本次抽样调查的样本容量是____ ____;
(2)在条形统计图补中,计算出日人均阅读时间在0.5~1小时的人数是____ ____,并将条形统计图补充完整;
(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数____ ____度;
(4)根据本次抽样调查,试估计该市15000名九年级学生中日人均阅读时间在0.5~1.5小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于下列结论:
①二次函数,当时,随的增大而增大.
②关于的方程的解是,(、、均为常数,),则方程的解是,.
③设二次函数,当时,总有,当时,总有,那么的取值范围是.
其中,正确结论的个数是( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,点A (-4,-2),将点A向右平移6个单位长度,得到点B.
(1)若抛物线y=-x2+bx+c经过点A,B,求此时抛物线的表达式;
(2)在(1)的条件下的抛物线顶点为C,点D是直线BC上一动点(不与B,C重合),是否存在点D,使△ABC和以点A,B,D构成的三角形相似?若存在,请求出此时D的坐标;若不存在,请说明理由;
(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义:横坐标与纵坐标均为整数的点为整点如图,已知双曲线经过点,记双曲线与两坐标轴之间的部分为(不含双曲线与坐标轴).
(1)求的值;
(2)求内整点的个数;
(3)设点在直线上,过点分别作平行于轴轴的直线,交双曲线于点,记线段、双曲线所围成的区域为,若内部(不包括边界)不超过个整点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com