【题目】如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).
(1)点C的坐标是;
(2)将△ABC沿x轴正方向平移得到△A′B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数y= 的图象上,求该反比例函数的解析式.
科目:初中数学 来源: 题型:
【题目】如图,把一矩形纸片OABC放入平面直角坐标系xoy中,使OA,OC分别落在x轴、y轴上,现将纸片OABC沿OB折叠,折叠后点A落在点A'的位置,若OA=1,OB=2,则点A'的坐标为( )
A.
B.
C.( )
D.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,过点向x轴作垂线,垂足为点M,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接AF,过点A作交y轴于点E,设点F运动的时间是t秒.
若点E在y轴的负半轴上如图所示,求证:;
如果点F运动时间是4秒.
求直线AE的表达式;
若直线AE与x轴的交点为B,C是y轴上一点,使,求出C的坐标;
在点F运动过程中,设,,试用含m的代数式表示n.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= 与双曲线y= (k>0,x>0)交于点A,将直线y= 向上平移4个单位长度后,与y轴交于点C,与双曲线y= (k>0,x>0)交于点B,若OA=3BC,则k的值为( )
A.3
B.6
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y= 的图象上,OA=1,OC=6,则正方形ADEF的边长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点P(2,2)作x轴的平行线交y轴于点A,交双曲线y=(x>0)于点N,作PM⊥AN交双曲线y=(x>0)于点M,连接AM,若PN=4.
(1)求k的值;
(2)设直线MN解析式为y=ax+b,求不等式ax+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;
(2)如图,AB∥CD,AB的下方两点E、F满足:BF平分∠ABE、DF平分∠CDE,若∠DFB=20°,∠CDE=70°,求∠ABE的度数;
(3)在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变,可以证明只有一个是正确的,请你作出正确的选择并求值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com