【题目】已知,两地相距,甲骑自行车,乙骑摩托车沿一条笔直的公路由地匀速行驶到地.设行驶时间为,甲、乙离开地的路程分别记为,,它们与的关系如图所示.
(1)分别求出线段,所在直线的函数表达式.
(2)试求点的坐标,并说明其实际意义.
(3)乙在行驶过程中,求两人距离超过时的取值范围.
【答案】(1)所在直线的函数表达式,线段所在直线的函数表达式;(2)F 的坐标为(4.5,60),甲出发4.5小时后,乙骑摩托车到达乙地;(3)或
【解析】
(1)利用待定系数法求出线段OD的函数表达式,进而求出点C的坐标,再利用待定系数法求出线段EF所在直线的函数表达式;
(2)根据线段EF所在直线的函数表达式求出F的坐标,即可说明其实际意义;
(3)根据两条线段的函数表达式列不等式解答即可.
解:(1)设线段所在直线的函数表达式,
将,代入,得,
∴线段所在直线的函数表达式,
把代入,得,
∴点的坐标为,
设线段所在直线的函数表达式,
将,代入,
得,
解得:,
∴线段所在直线的函数表达式;
(2)把代入,得,
∴的坐标为,
实际意义:甲出发4.5小时后,乙骑摩托车到达乙地;
(3)由题意可得,或者,
当时,,
解得,
又∵是在乙在行驶过程中,
∴当时,,
∴,
∴,
当时,,
解得,
又∵是在乙在行驶过程中,
∴当时,,
∴,
∴,
综上所述,乙在行驶过程中,两人距离超过时的取值范围是:或.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AO是角平分线,D为AO上一点,作△CDE,使DE=DC,∠EDC=∠BAC,连接BE.
(1)若∠BAC=60°,求证:△ACD≌△BCE;
(2)若∠BAC=90°,AD=DO,求的值;
(3)若∠BAC=90°,F为BE中点,G为 BE延长线上一点,CF=CG,AD=nDO,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下面的推理过程补充完整,并在括号内注明理由.
如图,已知∠B+∠BCD=180°,∠B=∠D.
试说明:∠E=∠DFE
解:∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知)
∴∠DCE= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB上的高等于DC.其中正确的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.
(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;
(2)求点P到直线CD距离的最大值;
(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,△ABC的顶点均在格点上,三个顶点的坐标分别是A(-3,4),B(-2,1),C(-4,2).
(1)将△ABC先向右平移7个单位长度,再向上平移2个单位长度,画出第二次平移后的△;
(2)以点O(0,0)为对称中心,画出与△ABC成中心对称的△;
(3)将点B绕坐标原点逆时针方向旋转90°至点,则点的坐标为(______,______)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题
(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;
(3)扇形统计图中等级D所在的扇形的圆心角度数是______;
(4)若A,B,C代表合格,该校初二年级有300名学生,求全年级生物合格的学生共约多少人
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com