【题目】如图AD是△ABC的角平分线,DF⊥AB,垂足为F,如图DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积( )
A.6B.12C.8D.3
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,以的AC边为直径作交斜边AB于点E,连接EO并延长交BC的延长线于点D,作交BC于点F,连接EF.
求证:
求证:EF是的切线;
若的半径为3,,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点和点.
求该抛物线所对应的函数解析式;
该抛物线与直线相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线轴,分别与x轴和直线CD交于点M、N.
连结PC、PD,如图1,在点P运动过程中,的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
连结PB,过点C作,垂足为点Q,如图2,是否存在点P,使得与相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB交x轴于点,交y轴与点,直线轴正半轴于点M,交线段AB于点C,,连接DA,.
求点D的坐标及过O、D、B三点的抛物线的解析式;
若点P是线段MB上一动点,过点P作x轴的垂线,交AB于点F,交上问中的抛物线于点E.
连接请求出满足四边形DCEF为平行四边形的点P的坐标;
连接CE,是否存在点P,使与相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数,(k为常数,k≠1).
(1)若点A(1,2)在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;
(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读并解决问题.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2﹣6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是实数,当x为何值时,此多项式2x2的最小值是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com