精英家教网 > 初中数学 > 题目详情

【题目】把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是(

A. B. C. D.

【答案】B

【解析】

首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案.

列表得:

1

2

3

4

1

(1,1)

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,2)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,3)

(3,4)

4

(4,1)

(4,2)

(4,3)

(4,4)

∵共有16种等可能的结果,数字x、y满足y=-x+5的有(1,4),(2,3),(3,2),(4,1),

∴数字x、y满足y=-x+5的概率为:

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)探究发现:下面是一道例题及解答过程,请补充完整:

如图①在等边ABC内部,有一点P,若∠APB=150°,求证:AP2+BP2=CP2

证明:将APCA点逆时针旋转60°,得到AP’B,连接PP’,则APP’为等边三角形

∴∠APP’=60° PA=PP’ PC=

∵∠APB=150°,∴∠BPP’=90°

P’P2+BP2= ,即PA2+PB2=PC2

2)类比延伸:如图②在等腰ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PAPBPC之间的数量关系,并证明.

3)联想拓展:如图③在ABC中,∠BAC=120°AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA2+PB2=PC2(其中k0),请直接写出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,是锐角,于点的中点,连接.若,则的值为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有(  )

(1)若通话时间少于120分,则A方案比B方案便宜20元;

(2)若通话时间超过200分,则B方案比A方案便宜12元;

(3)若通讯费用为60元,则B方案比A方案的通话时间多;

(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PCl,垂足为点C.测得PC=30米,∠APC=71°,BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(30)B(43)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点AB的对应点分别为点CD).

1)作出△COD

2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:

第一步:在x轴上找一格点E,连接DE,使OE=OD

第二步:在DE上找一点F,连接OF,使OF平分∠AOD

第三步:找格点G,得到正方形OAGC,连接AC,则ACOF的交点I是△OAD的内心.

请你按步骤完成作图,并直接写出EFI三点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点AAP的垂线交射线PB于点C,当PAB是等腰三角形时,线段BC的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EBC的中点,FCD上一点,AEEF.有下列结论:①∠BAE30°;②射线FE是∠AFC的角平分线;③AE2ADAF;④AFAB+CF.其中正确结论为是______.(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级计划成立学生社团,要求每一位学生都选择一个社团而且只能选择一个社团.为了解学生对不同社团的选择意向,随机抽取了七年级部分学生进行我最喜爱的社团问卷调查,并将调查结果绘制成如下两个不完整的统计图表.

七年级部分学生我最喜爱的社团调查结果统计表

社团名称

人数

文学社团

4

创客社团

9

书法社团

绘画社团

6

体育社团

10

音乐社团

5

美食社团

数学社团

2

七年级部分学生我最喜爱的社团调查结果扇形统计图

请解答下列问题:

1____________

2)在扇形统计图中,绘画社团所对应的扇形圆心角为______度.

3)该校七年级共有350名学生,每个社团人数不低于30人才可以开展.试通过计算估计该校七年级有哪些社团可以开展.

查看答案和解析>>

同步练习册答案