【题目】如图,在△ABC中,∠ACB为钝角,把边AC绕点A沿逆时针方向旋转90°得AD,把边BC绕点B沿顺时针方向旋转90°得BE,作DM⊥AB于点M,EN⊥AB于点N,若AB=5,EN=2,则DM=_____.
【答案】3
【解析】
过点C作CF⊥AB于点F,由旋转的性质可得AD=AC,BE=BC,利用“一线三等角“证得∠D=∠CAF,从而可判定△DAM≌△ACF(AAS),则DM=AF.同理可证,△BFC≌△ENB(AAS),则BF=EN=2,再由AB=5,可得AF,即DM的值.
解:过点C作CF⊥AB于点F,如图所示:
∵旋转,
∴AD=AC,BE=BC,
∵DM⊥AB于点M,EN⊥AB于点N,CF⊥AB于点F,
∴∠AMD=∠AFC=∠BFC=∠BNE=90°,
∴∠D+∠DAM=90°,
∵∠CAD=90°,
∴∠CAF+∠DAM=90°,
∴∠D=∠CAF,
∴在△DAM和△ACF中,
∴△DAM≌△ACF(AAS),
∴DM=AF.
同理可证,△BFC≌△ENB(AAS),
∴BF=EN=2,
∵AB=5,
∴AF=3,
∴DM=3.
故答案为:3.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ACB中,∠C=90°,AC=6,BC=8,半径为1的⊙O与AC,BC相切,当⊙O沿边CB平移至与AB相切时,则⊙O平移的距离为( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(列方程解答)
(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与反比例函数的图象交于A(-1,3),B(3,)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
(1)求一次函数及反比例函数的解析式;
(2)若点P在直线上,且S△ACP=2S△BDP,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车租贸公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.
(1)当租金提高多少元时,公司的每日收益可达到10120元?
(2)公司领导希望日收益达到10160元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由,
(3)汽车日常维护要定费用,已知外租车辆每日维护费为100元未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益﹣维护费)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是两圆柱形连通容器,两根铁棒直立于甲容器底部(连通处及铁棒体积忽略不计),向甲容器匀速注水,甲容器的水面高度h(cm)与时间t(分)的函数关系如图2所示.已知两根铁棒的长度之和为34cm,当水面达到连通处时,一根露出水面的长度是它的,另一根露出水面的长度是它的.
(1)①图2中(3,a)表示的实际意义是 ;
②请求出a的值;
(2)若甲、乙两容器的底面积之比为S甲,S乙=3:2.
①直接写出b的值为 ;
②求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.了解某型导弹杀伤力的情况应使用全面调查
B.可能性是1%的事件在一次试验中一定不会发生
C.一组数据3、6、6、7、9的众数是6
D.甲,乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是=0.3,=0.4,则乙的成绩更稳定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com