精英家教网 > 初中数学 > 题目详情

【题目】问题情景:如图1ABCD,∠PAB=130°,∠PCD=120°,求∠APC的度数.

1)数学活动小组经过讨论形成下列推理,请你补全推理依据.

如图2,过点PPEAB

PEAB(作图知)

又∵ABCD

PECD.(

∴∠A+APE=180°

C+CPE=180°.(

∵∠PAB=130°,∠PCD=120°

∴∠APE=50°,∠CPE=60°

∴∠APC=APE+CPE=110°

问题迁移:

2)如图3ADBC,当点PAB两点之间运动时,∠ADP=α,∠BCP=β,求∠CPDαβ之间有何数量关系?请说明理由.

问题解决:

3)在(2)的条件下,如果点PAB两点外侧运动时(点P与点ABO三点不重合),请你直接写出∠CPDαβ之间的数量关系

【答案】1)平行于同一条直线的两条直线平行 两直线平行同旁内角互补 2)∠CPD=∠α+∠β,理由见解析;(3)∠CPD=∠β-∠α或∠CPD=∠α-∠β.

【解析】

1)根据平行线的判定与性质填写即可;
2)过PPEADCDE,推出ADPEBC,根据平行线的性质得出∠α=DPE,∠β=CPE,即可得出答案;
3)画出图形(分两种情况①点PBA的延长线上,②点PAB的延长线上),根据平行线的性质得出∠α=DPE,∠β=CPE,即可得出答案.

解:(1)过点PPEAB
PEAB(作图知)

又∵ABCD
PECD.(平行于同一条直线的两条直线平行)
∴∠A+APE=180°.
C+CPE=180°.(两直线平行同旁内角互补)
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=APE+CPE=110°.
故答案为:平行于同一条直线的两条直线平行 两直线平行同旁内角互补
2)∠CPD=∠α+∠β,
理由是:如图3,过PPEADCDE

ADBC
ADPEBC
∴∠α=DPE,∠β=CPE
∴∠CPD=DPE+CPE=∠α+∠β;
3)当PBA延长线时,

PPEAD交直线CDE
同(2)可知:∠α=DPE,∠β=CPE
∴∠CPD=∠β-∠α;
PAB延长线时,

同(2)可知:∠α=DPE,∠β=CPE
∴∠CPD=∠α-∠β.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示数a,点B表示数bab满足|a20|+b+1020O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.

1)点A表示的数为   ,点B表示的数为   

2t为何值时,BQ2AQ

3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ6?若存在,求出所有符合条件的t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.

1)文学书和科普书的单价各多少钱?

2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBDCDBD,∠A与∠AEF互补,以下是证明CD//EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由。

证明:∵ABBDCDBD(已知)

∴∠ABD=CDB=_______________.____________________

∴∠ABD+CDB=180°

AB________________________________

又∠A与∠AEF互补____________________

∴∠A+AEF=_______________________________

AB//_______________________________

CD//EF____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),B(9,10),ACx轴,点P是直线AC下方抛物线上的动点。

(1)求抛物线的解析式;

(2)过点P且与y轴平行的直线l与直线ABAC分别交于点E.F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C.PQ为顶点的三角形与ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点PEFGH分别是折痕(如图2).设AEx(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x时,EF+GHAC;③当0<x<2时,六边形AEFCHG面积的最大值是3;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的选项是( )

A. ①③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

1

2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在纸面上有一条数轴

操作一:

折叠数轴,使表示1的点与表示-1的点重合,则表示-5的点与表示 的点重合.

操作二:

折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示-2的点与表示 的点重合;

②若数轴上A,B两点的距离为7(AB的左侧),且折叠后A,B两点重合,则点A表示的数为

B表示的数为

查看答案和解析>>

同步练习册答案