【题目】如图所示,在△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F.
(1)求证:AC=2BF
(2)连接DF,求证:AB垂直平分DF
(3)连接AF,试判断△ACF的形状,并说明理由.
【答案】(1)证明见解析;(2)证明见解析;(3)等腰三角形,理由见解析.
【解析】
(1)易证∠CDA=∠F,即可证明△ACD≌△CBF,可得CD=BF,易证AC=2CD,即可解题;
(2)连接DF交AB于G点,易证BD=BF,∠ABC=45°,根据△ACD≌△CBF,可求得∠ABF=45°,即可证明∴△DBG≌△FBG,可得DG=FG,∠DGB=∠FGB,即可求得∠DGB=∠FGB=90°,即可解题;
(3)由△CBF≌△ACD,得出CF=AD,由AB垂直平分DF,得出AF=AD,证得CF=AF,即可得出结论.
证明:(1)∵BF∥AC,且∠ACB=90°
∴BC⊥BF,
又∵CF⊥AD
∴∠DCE+∠F=90°,∠DCE+∠CDA=90°,
∴∠CDA=∠F,
在△ACD和△CBF中, ,
∴△ACD≌△CBF(AAS),
∴CD=BF,
∵点D是BC的中点,
∴AC=BC=2CD,
∴AC=2BF;
(2)连接DF交AB于G点,
∵点D是BC的中点,
∴AC=2BD,
∵AC=2BF,
∴BD=BF,
∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵△ACD≌△CBF,
∴∠CBF=∠ACD=90°,
∴∠ABF=45°,
在△DBG和△FBG中,,
∴△DBG≌△FBG(SAS),
∴DG=FG,∠DGB=∠FGB,
∵∠DGB+∠FGB=180°,
∴∠DGB=∠FGB=90°,
∴AB垂直平分DF;
(3)连接AF
由(1)知:△CBF≌△ACD,
∴CF=AD,
由(2)知:AB垂直平分DF,
∴AF=AD,
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.
科目:初中数学 来源: 题型:
【题目】某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100 m,200 m,1 000 m(分别用A1,A2,A3表示);田赛项目:跳远,跳高(分别用T1,T2表示).
(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为_________;
(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率(请利用列表法或树状图加以说明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为万元,可变成本逐年增长,已知该养殖户第年的可变成本为万元,第年的养殖成本为万元,现在要求可变成本平均每年增长的百分率,我们可设可变成本平均的每年增长的百分率为,则可列方程为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,AB⊥AD,点E在CD的延长线上,且∠BAC=∠DAE.
(1)求证:AC=AE;
(2)求证:CA平分∠BCD;
(3)如图(2),设AF是△ABC的边BC上的高,试求CE与AF之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=―x2+(6―)x+m―3与x轴交于A(x1,0)、B(x2,0)两点(x1<x2),交y轴于C点,且x1+x2=0。
(1)求抛物线的解析式,并写出顶点坐标及对称轴方程。
(2)在抛物线上是否存在一点P使△PBC≌△OBC,若存在,求出点P的坐标,若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数 (a≠0)的图象如图所示,
有下列结论:
①a、b同号;
②当x=1和x=3时,函数值相等;
③4a+b=0;
④当-1<x<5时,y<0.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com