精英家教网 > 初中数学 > 题目详情
17.计算:($\sqrt{2}$+$\sqrt{3}$+$\sqrt{5}$)(3$\sqrt{2}$+2$\sqrt{3}$-$\sqrt{30}$)+2.

分析 利用多项式乘多项式展开,然后合并即可.

解答 解:原式=6+2$\sqrt{6}$-2$\sqrt{15}$+3$\sqrt{6}$+6-3$\sqrt{10}$+3$\sqrt{10}$+2$\sqrt{15}$-5$\sqrt{6}$+2
=14.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,已知FD∥BE,则∠1+∠2-∠3的值为(  )
A.90°B.135°C.150°D.180°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.【提出问题】
(1)已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;
【类比探究】
(2)在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;
【拓展迁移】
(3)在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,求证:BE+CF>EF.
小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).
参考小明思考问题的方法,解决问题:
如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、AE、FC之间的数量关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.直线y=x-6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.
(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);
(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为$\frac{25}{8}$;
(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.若抛物线的顶点为点D(-1,4),点E(-2,n)在抛物线上,x轴,y轴上是否存在点P,Q,使四边形PQDE的周长最小?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知A${\;}_{3}^{2}$=3×2=6,A${\;}_{5}^{3}$=5×4×3=60,A${\;}_{5}^{2}$=5×4=20,A${\;}_{6}^{3}$=6×5×4=120,…,观察算式,寻找规律计算A${\;}_{2}^{2}$=2(直接写出计算结果),并比较A${\;}_{9}^{5}$与A${\;}_{10}^{3}$的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在△ABC中,BC=8,高AH为4,△DEF在△ABC内,三个顶点D、E、F分别在BC、AB和AC上,且点D与点A在直线EF的异侧,我们称△DEF为△ABC的内接三角形.
(1)如图1,当△DEF∽△ABC,且EF=3时,求△DEF的面积;
(2)如图2,在△ABC的内接△DEF中,DE=DF,∠EDF=90°,且EF∥BC,EF与AH交于G点,求△DEF的面积;
(3)如图3,在△ABC的内接三角形DEF中,DE=DF,且EF∥BC,EF与AH交于G点,求等腰△DEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2$\sqrt{3}$.过点D作DF∥BC,交AB的延长线于点F.
(1)求证:DF为⊙O的切线;
(2)若∠BAC=60°,DE=$\sqrt{7}$,求图中阴影部分的面积;
(3)若$\frac{AB}{AC}$=$\frac{4}{3}$,DF+BF=8,如图2,求BF的长.

查看答案和解析>>

同步练习册答案